Annales Henri Poincaré

, Volume 14, Issue 6, pp 1525–1550 | Cite as

Maximal Fermi Charts and Geometry of Inflationary Universes

Article

Abstract

A proof is given that the maximal Fermi coordinate chart for any comoving observer in a broad class of Robertson–Walker spacetimes consists of all events within the cosmological event horizon, if there is one, or is otherwise global. Exact formulas for the metric coefficients in Fermi coordinates are derived. Sharp universal upper bounds for the proper radii of leaves of the foliation by Fermi space slices are found, i.e., for the proper radii of the spatial universe at fixed times of the comoving observer. It is proved that the radius at proper time τ diverges to infinity for non inflationary cosmologies as τ → ∞, but not necessarily for cosmologies with periods of inflation. It is shown that any space like geodesic orthogonal to the worldline of a comoving observer has finite proper length and terminates within the cosmological event horizon (if there is one) at the big bang. Geometric properties of inflationary versus non inflationary cosmologies are compared, and opposite inequalities for the inflationary and non inflationary cases, analogous to Hubble’s law, are obtained for the Fermi relative velocities of comoving test particles. It is proved that the Fermi relative velocities of radially moving test particles are necessarily subluminal for inflationary cosmologies in contrast to non inflationary models, where superluminal relative Fermi velocities necessarily exist.

Preview

Unable to display preview. Download preview PDF.

Unable to display preview. Download preview PDF.

References

  1. 1.
    Walker A.G.: Note on relativistic mechanics. Proc. Edin. Math. Soc. 4, 170–174 (1935)CrossRefGoogle Scholar
  2. 2.
    Misner, C.W., Thorne, K.S., Wheeler, J.A.: Gravitation. W. H. Freeman, San Francisco, p. 329 (1973)Google Scholar
  3. 3.
    Chicone, C., Mashhoon, B.: Explicit Fermi coordinates and tidal dynamics in de Sitter and Gödel spacetimes. Phys. Rev. D 74, 064019 (2006). (arXiv:gr-qc/0511129)Google Scholar
  4. 4.
    Chicone, C., Mashhoon, B.: Tidal acceleration of ultrarelativistic particles. Astron. Astrophys. 437, L39–L42 (2005). (arXiv:astro-ph/0406005)Google Scholar
  5. 5.
    Ishii, M., Shibata, M., Mino, Y.: Black hole tidal problem in the Fermi normal coordinates. Phys. Rev. D 71, 044017 (2005). (arXiv:gr-qc/0501084)Google Scholar
  6. 6.
    Pound, A.: Nonlinear gravitational self-force: Field outside a small body. Phys. Rev. D 86, 084019 (2012). (arXiv:gr-qc/1206.6538)Google Scholar
  7. 7.
    Tino, G.M., Vetrano, F.: Is it possible to detect gravitational waves with atom interferometers? Class. Quant. Grav. 24, 2167–2178 (2007). (arXiv:gr-qc/0702118)Google Scholar
  8. 8.
    Klein, D., Collas, P.: Timelike Killing fields and relativistic statistical mechanics. Class. Quantum Grav. 26, 045018 (2009). (arXiv:gr-qc/0810.1776)Google Scholar
  9. 9.
    Klein, D., Yang, W.-S.: Grand canonical ensembles in general relativity. Math. Phys. Anal. Geom. 15, 61–83 (2012). (arXiv:math-ph/1009.3846)Google Scholar
  10. 10.
    Bimonte G., Calloni E., Esposito G., Rosa L.: Energy-momentum tensor for a Casimir apparatus in a weak gravitational field. Phys. Rev. D 74, 085011 (2006)ADSCrossRefGoogle Scholar
  11. 11.
    Parker L.: One-electron atom as a probe of spacetime curvature. Phys. Rev. D 22, 1922–1934 (1980)ADSCrossRefGoogle Scholar
  12. 12.
    Parker L., Pimentel L.O.: Gravitational perturbation of the hydrogen spectrum. Phys. Rev. D 25, 3180–3190 (1982)ADSCrossRefGoogle Scholar
  13. 13.
    Rinaldi, M.: Momentum-space representation of Greens functions with modified dispersion relations on general backgrounds. Phys. Rev. D 78, 024025 (2008). (arXiv:gr-qc/0803.3684)Google Scholar
  14. 14.
    Klein, D., Collas, P.: Recessional velocities and Hubble’s Law in Schwarzschild-de Sitter space. Phys. Rev. D15, 81, 063518 (2010). (arXiv:gr-qc/1001.1875)Google Scholar
  15. 15.
    Klein, D., Randles, E.: Fermi coordinates, simultaneity, and expanding space in Robertson–Walker cosmologies. Ann. Henri Poincaré 12 303–328 (2011). (arXiv:math-ph/1010.0588)Google Scholar
  16. 16.
    Bolós, V.J., Klein, D.: Relative velocities for radial motion in expanding Robertson–Walker spacetimes. Gen. Relativ. Gravit. 44, 1361–1391 (2012). (arXiv:gr-qc/1106.3859)Google Scholar
  17. 17.
    Bolós, V.J., Havens, S., Klein, D.: Relative velocities, geometry, and expansion of space. Recent Advances in Cosmology. Nova Science Publishers, Inc. (to appear). (arXiv:gr-qc/1210.3161)Google Scholar
  18. 18.
    Soffel, M., et~al.: The IAU 2000 resolutions for astrometry, celestial mechanics and metrology in the relativistic framework: Explanatory supplement. Astron. J. 126, 2687–2706 (2003). (arXiv:astro-ph/0303376)Google Scholar
  19. 19.
    Lindegren, L., Dravins, D.: The fundamental definition of ‘radial velocity’. Astron. Astrophys. 401, 1185–1202 (2003). (arXiv:astro-ph/0302522)Google Scholar
  20. 20.
    Bolós, V.J., Liern, V., Olivert, J.: Relativistic simultaneity and causality. Internat. J. Theoret. Phys. 41, 1007–1018 (2002). (arXiv:gr-qc/0503034)Google Scholar
  21. 21.
    Bolós, V.J.: Lightlike simultaneity, comoving observers and distances in general relativity. J. Geom. Phys. 56, 813–829 (2006). (arXiv:gr-qc/0501085)Google Scholar
  22. 22.
    Bolós, V.J.: Intrinsic definitions of “relative velocity” in general relativity. Commun. Math. Phys. 273, 217–236 (2007). (arXiv:gr-qc/0506032)Google Scholar
  23. 23.
    Manasse F.K., Misner C.W.: Fermi normal coordinates and some basic concepts in differential geometry. J. Math. Phys. 4, 735–745 (1963)MathSciNetADSMATHCrossRefGoogle Scholar
  24. 24.
    Klein, D., Collas, P.: General Transformation Formulas for Fermi-Walker Coordinates. Class. Quant. Grav. 25, 145019 (2008). (arXiv:gr-qc/0712.3838)Google Scholar
  25. 25.
    Rindler W.: Visual Horizons in World-models. Mon. Not. R. Astr. Soc. 116, 662–677 (1956)MathSciNetADSGoogle Scholar
  26. 26.
    Rindler W.: Visual Horizons in World-models. Gen. Rel. Grav. 34, 133–153 (2002)MathSciNetADSMATHCrossRefGoogle Scholar
  27. 27.
    Penrose, R.: Conformal treatment of infinity. In: DeWitt, C., DeWitt, B. (eds.) Relativity, Groups, and Topology. Les Houches, Gordon and Breach, 563–584 (1963)Google Scholar
  28. 28.
    Griffiths J., Podolsky J.: Exact Space-Times in Einstein’s General Relativity. Cambridge Monographs on Mathematical Physics. Cambridge University Press, Cambridge (2009)CrossRefGoogle Scholar
  29. 29.
    Page, D.N.: How big is the universe today? Gen. Rel. Grav. 15, 181–185 (1983)Google Scholar
  30. 30.
    Rindler W.: Public and private space curvature in Robertson–Walker universes. Gen. Rel. Grav. 13, 457–461 (1981)MathSciNetADSMATHCrossRefGoogle Scholar
  31. 31.
    Klein, D., Collas, P.: Exact Fermi coordinates for a class of spacetimes. J. Math. Phys. 51 022501 (2010). (arXiv:math-ph/0912.2779)Google Scholar
  32. 32.
    Weinberg, S.: Cosmology. Oxford University Press, New York, p. 48 (2008)Google Scholar
  33. 33.
    Zhu, Z-H., Hu, M., Alcaniz, J.S., Liu, Y.-X.: Testing power-law cosmology with galaxy clusters. Astron. Astophys. 483, 15–18 (2008). (arXiv:astro-ph/0712.3602)Google Scholar

Copyright information

© Springer Basel 2012

Authors and Affiliations

  1. 1.Department of Mathematics, Interdisciplinary Research Institute for the SciencesCalifornia State University NorthridgeNorthridgeUSA

Personalised recommendations