Wheeler, J.A., Zurek, W.H. (eds): Quantum Theory and Measurements. Princeton University Press, Princeton (1983)
Google Scholar
Guerlin C. et al.: Progressive field-state collapse and quantum non-demolition photon counting. Nature 448, 889 (2007)
ADS
Article
Google Scholar
Devoret M., Martinis J.M.: Implementing qubits with superconducting integrated circuits. Quantum Inf. Process. 3, 163–203 (2004)
MATH
Article
Google Scholar
Bauer M., Bernard D.: Convergence of repeated quantum nondemolition measurements and wave-function collapse. Phys. Rev. A 84, 044103 (2011)
ADS
Article
Google Scholar
Kummerer B., Maassen H.: A pathwise ergodic theorem for quantum trajectories. J. Phys. A 37(49), 11889–11896 (2004)
MathSciNet
ADS
Article
Google Scholar
Maassen, H., Kummerer, B.: Purification of quantum trajectories in dynamics and stochastics. In: IMS Lecture Notes Monogr. Ser., vol. 48, pp. 252–261. Inst. Math. Statist., Beachwood, OH (2006)
Bouten L., van Handel R., James M.R.: A discrete invitation to quantum filtering and feedback control. SIAM Rev. 51(2), 239–316 (2009)
MathSciNet
ADS
MATH
Article
Google Scholar
Davies E.B.: Quantum Theory of Open Systems. Academic, New York (1976)
MATH
Google Scholar
Gisin N.: Quantum measurements and stochastic processes. Phys. Rev. Lett. 52, 1657–1660 (1984)
MathSciNet
ADS
Article
Google Scholar
Diosi L.: Quantum stochastic processes as models for quantum state reduction. J. Phys. A21, 2885 (1988)
MathSciNet
ADS
Google Scholar
Barchielli A., Belavkin V.P.: Measurements continuous in time and a posteriori states in quantum mechanics. J. Phys. A Math. Gen. 24, 1495–1514 (1991)
MathSciNet
ADS
Article
Google Scholar
Barchielli A.: Measurement theory and stochastic differential equations in quantum mechanics. Phys. Rev. A 34, 1642–1648 (1986)
MathSciNet
ADS
Article
Google Scholar
Belavkin V.P.: A new wave equation for a continuous nondemolition measurement. Phys. Lett. A 140, 355–358 (1989)
MathSciNet
ADS
Article
Google Scholar
Belavkin V.P.: A posterior Schrödinger equation for continuous non demolition measurement. J. Math. Phys. 31, 2930–2934 (1990)
MathSciNet
ADS
MATH
Article
Google Scholar
Wiseman H.M.: Quantum theory and continuous feedback. Phys. Rev. A49, 2133 (1994)
ADS
Google Scholar
Bouten L., Guţă M., Maassen H.: Stochastic Schrödinger equations. J. Phys. A Math. Gen. 37, 3189–3209 (2004)
ADS
MATH
Article
Google Scholar
Bouten L., van Handel R., James M.R.: An introduction to quantum filtering. SIAM J. Control Optim. 46, 2199 (2007)
MathSciNet
MATH
Article
Google Scholar
Pellegrini C.: Markov chains approximation of jump-diffusion stochastic master equations. Ann. Henri Poincaré 46, 924–948 (2010)
MathSciNet
ADS
MATH
Article
Google Scholar
Pellegrini C.: Existence, uniqueness and approximation for stochastic Schrödinger equation: the diffusive case. Ann. Probab. 36, 2332–2353 (2008)
MathSciNet
MATH
Article
Google Scholar
Pellegrini C.: Existence, uniqueness and approximation of the jump-type stochastic Schrödinger equation for two-level systems. Stoch. Proc. Appl. 120, 1722–1747 (2010)
MathSciNet
MATH
Article
Google Scholar
Attal S., Pautrat Y.: From repeated to continuous quantum interactions. Ann. Henri Poincaré 7(1), 59104 (2006)
MathSciNet
Article
Google Scholar
Belavkin V.P.: Quantum stochastic calculus and quantum nonlinear filtering. J. Multivar. Anal. 42, 171–201 (1992)
MathSciNet
ADS
MATH
Article
Google Scholar
Belavkin V.P.: Quantum continual measurements and a posteriori collapse on CCR. Commun. Math. Phys. 146, 611–635 (1992)
MathSciNet
ADS
MATH
Article
Google Scholar
Adler S.L. et al.: Martingale models for quantum state reduction. J. Phys. A 34, 8795 (2001)
MathSciNet
ADS
MATH
Article
Google Scholar
van Handel R., Stockton J., Mabuchi H.: Feedback control of quantum state reduction. IEEE Trans. Autom. Control 50, 768 (2005)
Article
Google Scholar
Stockton J., van Handel R., Mabuchi H.: Deterministic Dick-state preparation with continuous measurement and control. Phys. Rev. A70, 022106 (2004)
ADS
Google Scholar
Amini, H., Mirrahimi, M., Rouchon, P.: Design of Strict control-Lyapunov functions for quantum systems with QND measurements. CDC/ECC 2011. http://arxiv.org/abs/1103.1365
Øksendal B.K.: Stochastic differential equations: an introduction with applications. Springer, Berlin (2003)
Google Scholar
Rouchon P.: Fidelity is a sub-martingale for discrete-time quantum filters. IEEE Trans. Autom. Control 56(11), 2743–2747 (2011)
MathSciNet
Article
Google Scholar
Pellegrini, C., Benoist, T.: (in preparation)