Repeated Quantum Non-Demolition Measurements: Convergence and Continuous Time Limit

Abstract

We analyze general enough models of repeated indirect measurements in which a quantum system interacts repeatedly with randomly chosen probes on which von Neumann direct measurements are performed. We prove, under suitable hypotheses, that the system state probability distribution converges after a large number of repeated indirect measurements, in a way compatible with quantum wave function collapse. We extend this result to mixed states and we prove similar results for the system density matrix. We show that the convergence is exponential with a rate given by some relevant mean relative entropies. We also prove that, under appropriate rescaling of the system and probe interactions, the state probability distribution and the system density matrix are solutions of stochastic differential equations modeling continuous-time quantum measurements. We analyze the large time behavior of these continuous time processes and prove convergence.

References

  1. 1

    Wheeler, J.A., Zurek, W.H. (eds): Quantum Theory and Measurements. Princeton University Press, Princeton (1983)

    Google Scholar 

  2. 2

    Guerlin C. et al.: Progressive field-state collapse and quantum non-demolition photon counting. Nature 448, 889 (2007)

    ADS  Article  Google Scholar 

  3. 3

    Devoret M., Martinis J.M.: Implementing qubits with superconducting integrated circuits. Quantum Inf. Process. 3, 163–203 (2004)

    MATH  Article  Google Scholar 

  4. 4

    Bauer M., Bernard D.: Convergence of repeated quantum nondemolition measurements and wave-function collapse. Phys. Rev. A 84, 044103 (2011)

    ADS  Article  Google Scholar 

  5. 5

    Kummerer B., Maassen H.: A pathwise ergodic theorem for quantum trajectories. J. Phys. A 37(49), 11889–11896 (2004)

    MathSciNet  ADS  Article  Google Scholar 

  6. 6

    Maassen, H., Kummerer, B.: Purification of quantum trajectories in dynamics and stochastics. In: IMS Lecture Notes Monogr. Ser., vol. 48, pp. 252–261. Inst. Math. Statist., Beachwood, OH (2006)

  7. 7

    Bouten L., van Handel R., James M.R.: A discrete invitation to quantum filtering and feedback control. SIAM Rev. 51(2), 239–316 (2009)

    MathSciNet  ADS  MATH  Article  Google Scholar 

  8. 8

    Davies E.B.: Quantum Theory of Open Systems. Academic, New York (1976)

    MATH  Google Scholar 

  9. 9

    Gisin N.: Quantum measurements and stochastic processes. Phys. Rev. Lett. 52, 1657–1660 (1984)

    MathSciNet  ADS  Article  Google Scholar 

  10. 10

    Diosi L.: Quantum stochastic processes as models for quantum state reduction. J. Phys. A21, 2885 (1988)

    MathSciNet  ADS  Google Scholar 

  11. 11

    Barchielli A., Belavkin V.P.: Measurements continuous in time and a posteriori states in quantum mechanics. J. Phys. A Math. Gen. 24, 1495–1514 (1991)

    MathSciNet  ADS  Article  Google Scholar 

  12. 12

    Barchielli A.: Measurement theory and stochastic differential equations in quantum mechanics. Phys. Rev. A 34, 1642–1648 (1986)

    MathSciNet  ADS  Article  Google Scholar 

  13. 13

    Belavkin V.P.: A new wave equation for a continuous nondemolition measurement. Phys. Lett. A 140, 355–358 (1989)

    MathSciNet  ADS  Article  Google Scholar 

  14. 14

    Belavkin V.P.: A posterior Schrödinger equation for continuous non demolition measurement. J. Math. Phys. 31, 2930–2934 (1990)

    MathSciNet  ADS  MATH  Article  Google Scholar 

  15. 15

    Wiseman H.M.: Quantum theory and continuous feedback. Phys. Rev. A49, 2133 (1994)

    ADS  Google Scholar 

  16. 16

    Bouten L., Guţă M., Maassen H.: Stochastic Schrödinger equations. J. Phys. A Math. Gen. 37, 3189–3209 (2004)

    ADS  MATH  Article  Google Scholar 

  17. 17

    Bouten L., van Handel R., James M.R.: An introduction to quantum filtering. SIAM J. Control Optim. 46, 2199 (2007)

    MathSciNet  MATH  Article  Google Scholar 

  18. 18

    Pellegrini C.: Markov chains approximation of jump-diffusion stochastic master equations. Ann. Henri Poincaré 46, 924–948 (2010)

    MathSciNet  ADS  MATH  Article  Google Scholar 

  19. 19

    Pellegrini C.: Existence, uniqueness and approximation for stochastic Schrödinger equation: the diffusive case. Ann. Probab. 36, 2332–2353 (2008)

    MathSciNet  MATH  Article  Google Scholar 

  20. 20

    Pellegrini C.: Existence, uniqueness and approximation of the jump-type stochastic Schrödinger equation for two-level systems. Stoch. Proc. Appl. 120, 1722–1747 (2010)

    MathSciNet  MATH  Article  Google Scholar 

  21. 21

    Attal S., Pautrat Y.: From repeated to continuous quantum interactions. Ann. Henri Poincaré 7(1), 59104 (2006)

    MathSciNet  Article  Google Scholar 

  22. 22

    Belavkin V.P.: Quantum stochastic calculus and quantum nonlinear filtering. J. Multivar. Anal. 42, 171–201 (1992)

    MathSciNet  ADS  MATH  Article  Google Scholar 

  23. 23

    Belavkin V.P.: Quantum continual measurements and a posteriori collapse on CCR. Commun. Math. Phys. 146, 611–635 (1992)

    MathSciNet  ADS  MATH  Article  Google Scholar 

  24. 24

    Adler S.L. et al.: Martingale models for quantum state reduction. J. Phys. A 34, 8795 (2001)

    MathSciNet  ADS  MATH  Article  Google Scholar 

  25. 25

    van Handel R., Stockton J., Mabuchi H.: Feedback control of quantum state reduction. IEEE Trans. Autom. Control 50, 768 (2005)

    Article  Google Scholar 

  26. 26

    Stockton J., van Handel R., Mabuchi H.: Deterministic Dick-state preparation with continuous measurement and control. Phys. Rev. A70, 022106 (2004)

    ADS  Google Scholar 

  27. 27

    Amini, H., Mirrahimi, M., Rouchon, P.: Design of Strict control-Lyapunov functions for quantum systems with QND measurements. CDC/ECC 2011. http://arxiv.org/abs/1103.1365

  28. 28

    Øksendal B.K.: Stochastic differential equations: an introduction with applications. Springer, Berlin (2003)

    Google Scholar 

  29. 29

    Rouchon P.: Fidelity is a sub-martingale for discrete-time quantum filters. IEEE Trans. Autom. Control 56(11), 2743–2747 (2011)

    MathSciNet  Article  Google Scholar 

  30. 30

    Pellegrini, C., Benoist, T.: (in preparation)

Download references

Author information

Affiliations

Authors

Corresponding author

Correspondence to Denis Bernard.

Additional information

D. Bernard: Member of CNRS.

Communicated by Krzysztof Gawedzki.

Rights and permissions

Reprints and Permissions

About this article

Cite this article

Bauer, M., Benoist, T. & Bernard, D. Repeated Quantum Non-Demolition Measurements: Convergence and Continuous Time Limit. Ann. Henri Poincaré 14, 639–679 (2013). https://doi.org/10.1007/s00023-012-0204-x

Download citation

Keywords

  • Radon
  • Density Matrix
  • Pointer State
  • Recursion Relation
  • Relative Entropy