Advertisement

Annales Henri Poincaré

, Volume 14, Issue 3, pp 567–610 | Cite as

Precise Arrhenius Law for p-forms: The Witten Laplacian and Morse–Barannikov Complex

  • Dorian Le Peutrec
  • Francis NierEmail author
  • Claude Viterbo
Article

Abstract

Accurate asymptotic expressions are given for the exponentially small eigenvalues of Witten Laplacians acting on p-forms. The key ingredient, which replaces explicit formulas for global quasimodes in the case p = 0, is Barannikov’s presentation of Morse theory in Barannikov (Adv Soviet Math 21:93–115, 1994).

Keywords

Exact Sequence Commutative Diagram Chain Complex Homology Group Small Eigenvalue 
These keywords were added by machine and not by the authors. This process is experimental and the keywords may be updated as the learning algorithm improves.

References

  1. 1.
    Barannikov S.A.: The framed Morse complex and its invariants. Singularities and bifurcations. Adv. Soviet Math. 21, 93–115 (1994)MathSciNetGoogle Scholar
  2. 2.
    Berglund, N.: Kramers’ law: Validity, derivation and generalisations. (Preprint). arXiv:1106.5799v1 (2011)Google Scholar
  3. 3.
    Bismut, J.M., Lebeau, G.: The hypoelliptic Laplacian and Ray-Singer metrics. Annals of Mathematics Studies, vol. 167. Princeton University Press, New Jersy (2008)Google Scholar
  4. 4.
    Bismut J.M.: The Witten complex and the degenerate Morse inequalities. J. Differ. Geom. 23, 207–240 (1986)MathSciNetzbMATHGoogle Scholar
  5. 5.
    Bismut J.M.: Hypoelliptic Laplacian and Bott-Chern cohomology. Comptes Rendus Mathematique 349(2), 75–80 (2011)MathSciNetzbMATHCrossRefGoogle Scholar
  6. 6.
    Bovier A., Eckhoff M., Gayrard V., Klein M.: Metastability in reversible diffusion processes I: sharp asymptotics for capacities and exit times. JEMS 6(4), 399–424 (2004)MathSciNetzbMATHGoogle Scholar
  7. 7.
    Bovier A., Gayrard V., Klein M.: Metastability in reversible diffusion processes II: precise asymptotics for small eigenvalues. JEMS 7(1), 69–99 (2004)MathSciNetGoogle Scholar
  8. 8.
    Bott R.: Lectures on Morse theory, old and new. Bull. Am. Math. Soc. (N.S.) 7(2), 331–358 (1982)MathSciNetADSzbMATHCrossRefGoogle Scholar
  9. 9.
    Bott, R.: Morse theory indomitable, vol. 78, pp. 99–114. Publications IHES, Tome (1988)Google Scholar
  10. 10.
    Bott, R., Tu, L.: Differential forms in algebraic topology. Graduate Texts in Mathematics, vol. 82. Springer, Berlin (1982)Google Scholar
  11. 11.
    Chang K.C., Liu J.: A cohomology complex for manifolds with boundary. Topol. Methods NonLinear Anal. 5, 325–340 (1995)MathSciNetzbMATHGoogle Scholar
  12. 12.
    Cycon, H.L., Froese, R.G., Kirsch, W., Simon, B.: Schrödinger operators with application to quantum mechanics and global geometry. Text and Monographs in Physics. Springer, Berlin (1987)Google Scholar
  13. 13.
    Dimassi, M., Sjöstrand, J.: Spectral Asymptotics in the semi-classical limit. London Mathematical Society. Lecture Note Series, Vol. 268. Cambridge University Press, Cambridge (1999)Google Scholar
  14. 14.
    Freidlin, M.I., Wentzell, A.D.: Random perturbations of dynamical systems. Transl. from the Russian by Joseph Szuecs, 2nd edn. Grundlehren der Mathematischen Wissenschaften, vol. 260. Springer, Berlin (1998).Google Scholar
  15. 15.
    Fulton, W.: 1995 Algebraic topology. A first course. Graduate Texts in Mathematics, vol. 153. Springer (1995)Google Scholar
  16. 16.
    Guérini P.: Prescription du spectre du laplacien de Hodge-de Rham. Ann. Sci. École Norm. Sup. (4) 37(2), 270–303 (2004)zbMATHGoogle Scholar
  17. 17.
    Hatcher A.: Algebraic topology. Cambridge University Press, Cambridge (2002)zbMATHGoogle Scholar
  18. 18.
    Helffer, B.: Introduction to the semi-classical Analysis for the Schrödinger operator and applications. Lecture Notes in Mathematics, vol. 1336, Springer, Berlin (1988)Google Scholar
  19. 19.
    Helffer B., Klein M., Nier F.: Quantitative analysis of metastability in reversible diffusion processes via a Witten complex approach. Matematica Contemporanea 26, 41–85 (2004)MathSciNetzbMATHGoogle Scholar
  20. 20.
    Helffer B., Nier F.: Quantitative analysis of metastability in reversible diffusion processes via a Witten complex approach: the case with boundary. Mémoire 105, Société Mathématique de France, (2006)Google Scholar
  21. 21.
    Helffer, B., Nier, F.: Hypoelliptic estimates and spectral theory for Fokker- Planck operators and Witten Laplacians. Lecture Notes in Mathematics, vol. 1862. Springer, Berlin (2005)Google Scholar
  22. 22.
    Helffer B., Sjöstrand J.: Puits multiples en limite semi-classique II—Interaction moléculaire—Symétries - Perturbations. Ann. Inst. H. Poincaré Phys. Théor. 42(2), 127–212 (1985)zbMATHGoogle Scholar
  23. 23.
    Helffer B., Sjöstrand J.: Multiple wells in the semi-classical limit III. Math. Nachrichte 124, 263–313 (1985)zbMATHCrossRefGoogle Scholar
  24. 24.
    Helffer B., Sjöstrand J.: Puits multiples en limite semi-classique IV - Étude du complexe de Witten -. Commun. Partial Differ. Equ. 10(3), 245–340 (1985)zbMATHCrossRefGoogle Scholar
  25. 25.
    Hérau F., Nier F.: Isotropic hypoellipticity and trend to the equilibrium for the Fokker–Planck equation with high degree potential. Arch. Ration. Mech. Anal. 171(2), 151–218 (2004)MathSciNetzbMATHCrossRefGoogle Scholar
  26. 26.
    Hérau F., Sjöstrand J., Stolk C.: Semiclassical analysis for the Kramers– Fokker–Planck equation. Commun. Partial Differ. Equ. 30(4-6), 689–760 (2005)zbMATHCrossRefGoogle Scholar
  27. 27.
    Hérau F., Hitrik M., Sjöstrand J.: Tunnel effect for Kramers–Fokker*-Planck type operators. Ann. Henri Poincaré 9(2), 209–274 (2008)ADSzbMATHCrossRefGoogle Scholar
  28. 28.
    Hérau F., Hitrik M., Sjöstrand J.: Tunnel effect and symmetries for Kramers–Fokker–Planck type operators. J. Inst. Math. Jussieu 10(3), 567–634 (2011)MathSciNetzbMATHCrossRefGoogle Scholar
  29. 29.
    Holley R., Kusuoka R., Stroock D.: Asymptotic of the spectral gap with applications to the theory of simulated annealing. J. Funct. Anal. 83(2), 333–347 (1989)MathSciNetzbMATHCrossRefGoogle Scholar
  30. 30.
    Koldan, N., Prokhorenkov, I., Shubin, M.: Semiclassical asymptotics on manifolds with Boundary. Spectral analysis in geometry and number theory, Contemprory Mathematics, vol. 484, pp. 239–266. American Mathematical Society, USA (2009)Google Scholar
  31. 31.
    Laudenbach F.: On the Thom-Smale complex. Astérisque 205, 219–233 (1992)Google Scholar
  32. 32.
    Laudenbach F.: A Morse complex on manifolds with boundary. Geometrica Dedicata 153(1), 47–57 (2011)MathSciNetzbMATHCrossRefGoogle Scholar
  33. 33.
    Le Peutrec D.: Small singular values of an extracted matrix of a Witten complex. Cubo A Math. J. 11(4), 49–57 (2009)MathSciNetzbMATHGoogle Scholar
  34. 34.
    Le Peutrec D.: Local WKB construction for Witten Laplacians on manifolds with boundary. Analysis PDE 3(3), 227–260 (2010)MathSciNetzbMATHCrossRefGoogle Scholar
  35. 35.
    Le Peutrec D.: Small eigenvalues of the Neumann realization of the semiclassical Witten Laplacian. Ann. Fac. Sci. Toulouse Math (6) 19(3–4), 735–809 (2010)MathSciNetzbMATHCrossRefGoogle Scholar
  36. 36.
    Le Peutrec D.: Small eigenvalues of the Witten Laplacian acting on p-forms on a surface. Asymptot. Anal. 73(4), 187–201 (2011)MathSciNetzbMATHGoogle Scholar
  37. 37.
    Massey, W.S.:A basic course in algebraic topology. Graduate Texts in Mathematics, vol. 127. Springer, Berlin (1991)Google Scholar
  38. 38.
    Milnor, J.: Morse theory. Annals of Mathematics Studies No. 51. Princeton University Press, Princeton (1963)Google Scholar
  39. 39.
    Nelson E.: Dynamical Theories of Brownian Motion, 2nd edn. Princeton University Press, Princeton (2002)Google Scholar
  40. 40.
    Schwarz, G.: Hodge Decomposition. A method for solving boundary value problems. Lecture Notes in Mathematics, vol. 1607. Springer, Besrlin (1995)Google Scholar
  41. 41.
    Simon, B.: Trace Ideals and Their Applications. London Mathematical Society. Lecture Note Series, vol. 35. Cambridge University Press, Cambridge (1979)Google Scholar
  42. 42.
    Spanier E.H.: Algebraic Topology. McGraw-Hill Series in Higher Mathematics, USA (1966)zbMATHGoogle Scholar
  43. 43.
    Taylor, M.E.: Partial Differential Equations 1, basic theory. Applied Mathematical Sciences, vol. 115. Springer, Berlin (1997)Google Scholar
  44. 44.
    Tailleur J., Tanase-Nicola S., Kurchan J.: Kramers equation and supersymmetry. J. Stat. Phys. 122(4), 557–595 (2006)MathSciNetADSzbMATHCrossRefGoogle Scholar
  45. 45.
    Witten E.: Supersymmetry and morse inequalities. J. Diff. Geom. 17(4), 661–692 (1982)MathSciNetzbMATHGoogle Scholar
  46. 46.
    Zhang, W.: Lectures on Chern-Weil theory and Witten deformations. Nankai Tracts in Mathematics, vol. 4. World Scientific Publishing Co., Hackensack (2001)Google Scholar

Copyright information

© Springer Basel AG 2012

Authors and Affiliations

  • Dorian Le Peutrec
    • 1
  • Francis Nier
    • 2
    Email author
  • Claude Viterbo
    • 3
    • 4
  1. 1.Département de MathématiquesUMR-CNRS 8628Orsay CedexFrance
  2. 2.IRMAR, UMR-CNRS 6625, Université de Rennes 1Rennes CedexFrance
  3. 3.CMLS, UMR-CNRS 7640, Ecole PolytechniquePalaiseau CedexFrance
  4. 4.Eilenberg Chair for Spring 2011 at Columbia UniversityNew YorkUSA

Personalised recommendations