Asymptotic Distribution of Quasi-Normal Modes for Kerr–de Sitter Black Holes

Abstract

We establish a Bohr–Sommerfeld type condition for quasi-normal modes of a slowly rotating Kerr–de Sitter black hole, providing their full asymptotic description in any strip of fixed width. In particular, we observe a Zeeman-like splitting of the high multiplicity modes at a = 0 (Schwarzschild–de Sitter), once spherical symmetry is broken. The numerical results presented in Appendix B show that the asymptotics are in fact accurate at very low energies and agree with the numerical results established by other methods in the physics literature. We also prove that solutions of the wave equation can be asymptotically expanded in terms of quasi-normal modes; this confirms the validity of the interpretation of their real parts as frequencies of oscillations, and imaginary parts as decay rates of gravitational waves.

References

  1. 1

    Abbott B.P. et al.: The LIGO scientic collaboration, search for gravitational wave ringdowns from perturbed black holes in LIGO S4 data. Phys. Rev. D 80, 062001 (2009)

    MathSciNet  ADS  Article  Google Scholar 

  2. 2

    Andersson, L., Blue, P.: Hidden symmetries and decay for the wave equation on the Kerr spacetime. Preprint, arXiv:0908.2265

  3. 3

    Bachelot A.: Gravitational scattering of electromagnetic field by Schwarzschild black hole. Ann. Inst. H. Poincaré Phys. Théor. 54, 261–320 (1991)

    MathSciNet  ADS  MATH  Google Scholar 

  4. 4

    Bachelot A.Scattering of electromagnetic field by de Sitter–Schwarzschild black hole. Non-linear hyperbolic equations and field theory. Pitman Res. Notes Math. Ser. 253, 23–35

  5. 5

    Bachelot A., Motet-Bachelot A.: Les résonances d’un trou noir de Schwarzschild. Ann. Inst. H. Poincaré Phys. Théor. 59, 3–68 (1993)

    MathSciNet  MATH  Google Scholar 

  6. 6

    Berti E., Cardoso V., Starinets A.: Quasinormal modes of black holes and black branes. Class. Quant. Grav. 26, 163001 (2009)

    MathSciNet  ADS  Article  Google Scholar 

  7. 7

    Berti E., Cardoso V., Will C.M.: On gravitational-wave spectroscopy of massive black holes with the space interferometer LISA. Phys. Rev. D 73, 064030 (2006)

    MathSciNet  ADS  Article  Google Scholar 

  8. 8

    Berti E., Kokkotas K.: Quasinormal modes of Kerr–Newman black holes: coupling of electromagnetic and gravitational perturbations. Phys. Rev. D 71, 124008 (2005)

    MathSciNet  ADS  Article  Google Scholar 

  9. 9

    Blue P., Sterbenz J.: Uniform decay of local energy and the semi-linear wave equation on Schwarzschild space. Comm. Math. Phys. 268, 481–504 (2006)

    MathSciNet  ADS  MATH  Article  Google Scholar 

  10. 10

    Bony J.-F., Häfner D.: Decay and non-decay of the local energy for the wave equation on the de Sitter-Schwarzschild metric. Comm. Math. Phys. 282, 697–719 (2008)

    MathSciNet  ADS  MATH  Article  Google Scholar 

  11. 11

    Chandrasekhar S.: The Mathematical Theory of Black Holes. Oxford Classic Texts in the Physical Sciences. Oxford University Press, Oxford (2000)

    Google Scholar 

  12. 12

    Charbonnel A.-M.: Spectre conjoint d’opérateurs pseudodifférentiels qui commutent. Ann. Fac. Sci. Toulouse Math. 5, 109–147 (1983)

    MathSciNet  MATH  Article  Google Scholar 

  13. 13

    Christiansen T., Zworski M.: Resonance wave expansions: two hyperbolic examples. Comm. Math. Phys. 212, 323–336 (2000)

    MathSciNet  ADS  MATH  Article  Google Scholar 

  14. 14

    Colinde Verdière Y.: Bohr–Sommerfeld rules to all orders. Ann. Henri Poincaré 6, 925–936 (2005)

    ADS  Article  Google Scholar 

  15. 15

    Colin de Verdière, Y., Guillemin, V.: A semi-classical inverse problem I: Taylor expansions. Preprint, arXiv:0802.1605

  16. 16

    Colinde Verdière Y., Parisse B.: Équilibre instable en régime semi-classique: I—Concentration microlocale. Comm. Partial Differ. Equ. 19, 1535–1563 (1994)

    Article  Google Scholar 

  17. 17

    Dafermos, M., Rodnianski, I.: The wave equation on Schwarzschild–de Sitter spacetimes. Preprint, arXiv:0709.2766

  18. 18

    Dafermos, M., Rodnianski, I.: Lectures on black holes and linear waves. Preprint, arXiv:0811.0354v1

  19. 19

    Dafermos, M., Rodnianski, I.: Decay for solutions of the wave equation on Kerr exterior space-times I–II: the cases of |a| ≪ M or axisymmetry. Preprint, arXiv:1010.5132

  20. 20

    Datchev, K., Vasy, A.: Gluing semiclassical resolvent estimates via propagation of singularities. Preprint, arXiv:1008.3964

  21. 21

    Dimassi M., Sjöstrand J.: Spectral Asymptotics in the Semi-classical Limit. Cambridge University Press, Cambridge (1999)

    MATH  Book  Google Scholar 

  22. 22

    Donninger, R., Schlag, W., Soffer, A.: A proof of Price’s Law on Schwarzschild black hole manifolds for all angular momenta. Preprint, arXiv:0908.4292

  23. 23

    Donninger, R., Schlag, W., Soffer, A.: On pointwise decay of linear waves on a Schwarzschild black hole background. Preprint, arXiv:0911.3179

  24. 24

    Duistermaat J.J.: On global action-angle coordinates. Comm. Pure Appl. Math. 33, 687–706 (1980)

    MathSciNet  MATH  Article  Google Scholar 

  25. 25

    Dunford N., Schwarz J.T.: Linear Operators, Part I: General Theory. Interscience, New York (1958)

    Google Scholar 

  26. 26

    Dyatlov S.: Quasi-normal modes and exponential energy decay for the Kerr–de Sitter black hole. Comm. Math. Phys. 306, 119–163 (2011)

    MathSciNet  ADS  MATH  Article  Google Scholar 

  27. 27

    Dyatlov, S.: Exponential energy decay for Kerr–de Sitter black holes beyond event horizons. Math. Res. Lett. (to appear), arXiv:1010.5201

  28. 28

    Finster F., Kamran N., Smoller J., Yau S.-T.: Decay of solutions of the wave equation in the Kerr geometry. Comm. Math. Phys. 264, 465–503 (2006)

    MathSciNet  ADS  MATH  Article  Google Scholar 

  29. 29

    Finster F., Kamran N., Smoller J., Yau S.-T.: Erratum: decay of solutions of the wave equation in the Kerr geometry. Comm. Math. Phys. 280, 563–573 (2008)

    MathSciNet  ADS  MATH  Article  Google Scholar 

  30. 30

    Guillemin, V., Sternberg, S.: Semi-classical analysis. Lecture Notes (version of January 13, 2010), http://www-math.mit.edu/~vwg/semiclassGuilleminSternberg.pdf

  31. 31

    Hitrik M., Sjöstrand J.: Non-selfadjoint perturbations of selfadjoint operators in two dimensions. I. Ann. Henri Poincaré 5, 1–73 (2004)

    MATH  Article  Google Scholar 

  32. 32

    Hitrik M., Sjöstrand J., SanVũ Ngọc : Diophantine tori and spectral asymptotics for nonselfadjoint operators. Am. J. Math. 129, 105–182 (2007)

    MATH  Google Scholar 

  33. 33

    Horowitz G.T., Hubeny V.E.: Quasinormal modes of AdS black holes and the approach to thermal equilibrium. Phys. Rev. D 62, 024027 (2000)

    MathSciNet  ADS  Article  Google Scholar 

  34. 34

    Hörmander L.: The Analysis of Linear Partial Differential Operators. I. Distribution Theory and Fourier Analysis. Springer, Berlin (1990)

    MATH  Google Scholar 

  35. 35

    Kokkotas, K.D., Schmidt, B.G.: Quasi-normal modes of stars and black holes. Living Rev. Relativ. 2 (1999), http://www.livingreviews.org/lrr-1999-2

  36. 36

    Konoplya R.A., Zhidenko A.: High overtones of Schwarzschild-de Sitter quasinormal spectrum. JHEP 0406, 037 (2004)

    MathSciNet  ADS  Article  Google Scholar 

  37. 37

    Konoplya R.A., Zhidenko A.: Decay of a charged scalar and Dirac fields in the Kerr-Newman-de Sitter background. Phys. Rev. D 76, 084018 (2007)

    MathSciNet  ADS  Article  Google Scholar 

  38. 38

    Melrose, R., Sá Barreto, A., Vasy, A.: Asymptotics of solutions of the wave equation on de Sitter–Schwarzschild space. Preprint, arXiv:0811.2229

  39. 39

    Pravica D.: Top resonances of a black hole. R. Soc. Lond. Proc. Ser. A 455, 3003–3018 (1999)

    MathSciNet  ADS  MATH  Article  Google Scholar 

  40. 40

    Ramond T.: Semiclassical study of quantum scattering on the line. Comm. Math. Phys. 177, 221–254 (1996)

    MathSciNet  ADS  MATH  Article  Google Scholar 

  41. 41

    Sá~Barreto A., Zworski M.: Distribution of resonances for spherical black holes. Math. Res. Lett. 4, 103–121 (1997)

    MathSciNet  MATH  Google Scholar 

  42. 42

    Sjöstrand, J.: Semiclassical resonances generated by nondegenerate critical points. Pseudodifferential operators, Lecture Notes in Mathematics, vol. 1256, pp. 402–429. Springer, Berlin (1987)

  43. 43

    Sjöstrand J.: Semi-excited states in nondegenerate potential wells. Asymp. Anal. 6, 29–43 (1992)

    MATH  Google Scholar 

  44. 44

    Sjöstrand J., Zworski M.: Quantum monodromy and semi-classical trace formulae. J. Math. Pures Appl. 81, 1–33 (2002)

    MathSciNet  MATH  Google Scholar 

  45. 45

    Tang S.-H., Zworski M.: Resonance expansions of scattered waves. Comm. Pure Appl. Math. 53, 1305–1334 (2000)

    MathSciNet  MATH  Article  Google Scholar 

  46. 46

    Tataru, D.: Local decay of waves on asymptotically flat stationary space-times. Preprint, arXiv:0910.5290

  47. 47

    Tataru, D., Tohaneanu, M.: Local energy estimate on Kerr black hole backgrounds. Preprint, arXiv:0810.5766

  48. 48

    Taylor M.: Partial Differential Equations, I. Basic Theory. Springer, Berlin (1996)

    Google Scholar 

  49. 49

    Tohaneanu, M.: Strichartz estimates on Kerr black hole backgrounds. Preprint, arXiv:0910.1545

  50. 50

    Vasy, A.: Microlocal analysis of asymptotically hyperbolic and Kerr–de Sitter spaces. Preprint, arXiv:1012.4391

  51. 51

    Vũ Ngọc S.: Systèmes intégrables semi-classiques: du local au global. Société Mathématique de France, France (2006)

    Google Scholar 

  52. 52

    Wunsch, J., Zworski, M.: Resolvent estimates for normally hyperbolic trapped sets. Preprint, arXiv:1003.4640

  53. 53

    Yoshida S., Uchikata N., Futamase T.: Quasinormal modes of Kerr–de Sitter black holes. Phys. Rev. D 81, 044005 (2010)

    MathSciNet  ADS  Article  Google Scholar 

  54. 54

    Zworski, M.: Semiclassical analysis. Graduate Studies in Mathematics. AMS (2012), http://math.berkeley.edu/~zworski/semiclassical.pdf

Download references

Author information

Affiliations

Authors

Corresponding author

Correspondence to Semyon Dyatlov.

Additional information

Communicated by Piotr T. Chrusciel.

Rights and permissions

Reprints and Permissions

About this article

Cite this article

Dyatlov, S. Asymptotic Distribution of Quasi-Normal Modes for Kerr–de Sitter Black Holes. Ann. Henri Poincaré 13, 1101–1166 (2012). https://doi.org/10.1007/s00023-012-0159-y

Download citation

Keywords

  • Black Hole
  • Asymptotic Distribution
  • Pseudodifferential Operator
  • Quasinormal Mode
  • Principal Symbol