Annales Henri Poincaré

, Volume 13, Issue 3, pp 399–423 | Cite as

The Complete 1/N Expansion of Colored Tensor Models in Arbitrary Dimension

Article

Abstract

In this paper we generalize the results of Gurau (arXiv:1011. 2726 [gr-qc], 2011), Gurau and Rivasseau (arXiv:1101.4182 [gr-qc], 2011) and derive the full 1/N expansion of colored tensor models in arbitrary dimensions. We detail the expansion for the independent identically distributed model and the topological Boulatov Ooguri model.

References

  1. 1.
    Gurau R.: The 1/N expansion of colored tensor models. Annales Henri Poincare 12, 829 (2011) arXiv:1011.2726 [gr-qc]MathSciNetADSMATHCrossRefGoogle Scholar
  2. 2.
    Gurau, R., Rivasseau, V.: The 1/N expansion of colored tensor models in arbitrary dimension. (2011) arXiv:1101.4182 [gr-qc]Google Scholar
  3. 3.
    David F.: A model of random surfaces with nontrivial critical behavior. Nucl. Phys. B 257, 543 (1985)ADSCrossRefGoogle Scholar
  4. 4.
    Gross M.: Tensor models and simplicial quantum gravity in >  2-D. Nucl. Phys. Proc. Suppl. 25, 144 (1992)ADSCrossRefGoogle Scholar
  5. 5.
    Ambjorn J., Durhuus B., Jonsson T.: Three-dimensional simplicial quantum gravity and generalized matrix mod. Mod. Phys. Lett. A 6, 1133 (1991)MathSciNetADSCrossRefGoogle Scholar
  6. 6.
    Sasakura N.: Tensor model for gravity and orientability of manifold. Mod. Phys. Lett. A 6, 2613 (1991)MathSciNetADSMATHCrossRefGoogle Scholar
  7. 7.
    Boulatov D.V.: A model of three-dimensional lattice gravity. Mod. Phys. Lett. A 7, 1629 (1992) arXiv:hep-th/9202074MathSciNetADSMATHCrossRefGoogle Scholar
  8. 8.
    Ooguri H.: Topological lattice models in four-dimensions. Mod. Phys. Lett. A 7, 2799 (1992) arXiv:hep-th/9205090MathSciNetADSMATHCrossRefGoogle Scholar
  9. 9.
    Freidel L.: Group field theory: an overview. Int. J. Theor. Phys. 44, 1769 (2005) arXiv:hep-th/0505016MathSciNetMATHCrossRefGoogle Scholar
  10. 10.
    Oriti, D.: The group field theory approach to quantum gravity: some recent results. arXiv:0912.2441 [hep-th]Google Scholar
  11. 11.
    Brezin E., Itzykson C., Parisi G., Zuber J.B.: Planar diagrams. Commun. Math. Phys. 59, 35 (1978)MathSciNetADSMATHCrossRefGoogle Scholar
  12. 12.
    ’t Hooft G.: A planar diagram theory for strong interactions. Nucl. Phys. B 72, 461 (1974)MathSciNetADSCrossRefGoogle Scholar
  13. 13.
    Gross D.J., Miljkovic N.: A nonperturbative solution of D = 1 string theory. Phys. Lett. B 238, 217 (1990)MathSciNetADSCrossRefGoogle Scholar
  14. 14.
    Gross D.J., Klebanov I.R.: One-dimensional string theory on a circle. Nucl. Phys. B 344, 475 (1990)MathSciNetADSCrossRefGoogle Scholar
  15. 15.
    Di Francesco P., Ginsparg P.H., Zinn-Justin J.: 2-D Gravity and random matrices. Phys. Rept. 254, 1 (1995) arXiv:hep-th/9306153MathSciNetADSCrossRefGoogle Scholar
  16. 16.
    Kazakov V.A., Migdal A.A., Kostov I.K.: Critical properties of randomly triangulated planar random surfaces. Phys. Lett. B 157, 295 (1985)MathSciNetADSCrossRefGoogle Scholar
  17. 17.
    Boulatov D.V., Kazakov V.A., Kostov I.K., Migdal A.A.: Analytical and numerical study of the model of dynamically triangulated random surfaces. Nucl. Phys. B 275, 641 (1986)MathSciNetADSCrossRefGoogle Scholar
  18. 18.
    Kazakov V., Kostov I.K., Kutasov D.: A matrix model for the two-dimensional black hole. Nucl. Phys. B 622, 141 (2002) arXiv:hep-th/0101011MathSciNetADSMATHCrossRefGoogle Scholar
  19. 19.
    Freidel L., Louapre D.: Ponzano-Regge model revisited. I: gauge fixing, observables and interacting spinning particles. Class. Quant. Grav. 21, 5685 (2004) arXiv:hep-th/0401076MathSciNetADSMATHCrossRefGoogle Scholar
  20. 20.
    Baratin A., Oriti D.: Group field theory with non-commutative metric variables. Phys. Rev. Lett. 105, 221302 (2010) arXiv:1002.4723 [hep-th]MathSciNetADSCrossRefGoogle Scholar
  21. 21.
    Engle J., Pereira R., Rovelli C.: Flipped spinfoam vertex and loop gravity. Nucl. Phys. B 798, 251 (2008) arXiv:0708.1236[gr-qc]MathSciNetADSMATHCrossRefGoogle Scholar
  22. 22.
    Livine E.R., Speziale S.: A new spinfoam vertex for quantum gravity. Phys. Rev. D 76, 084028 (2007) arXiv:0705.0674[gr-qc]MathSciNetADSCrossRefGoogle Scholar
  23. 23.
    Freidel L., Krasnov K.: A new spinfoam model for 4d gravity. Class. Quant. Grav. 25, 125018 (2008) arXiv:0708.1595 [gr-qc]MathSciNetADSCrossRefGoogle Scholar
  24. 24.
    Geloun J.B., Gurau R., Rivasseau V.: EPRL/FK group field theory. Europhys. Lett. 92, 60008 (2010) arXiv:1008.0354 [hep-th]CrossRefGoogle Scholar
  25. 25.
    Oriti D., Tlas T.: Encoding simplicial quantum geometry in group field theories. Class. Quant. Grav. 27, 135018 (2010) arXiv:0912.1546 [gr-qc]MathSciNetADSCrossRefGoogle Scholar
  26. 26.
    Grosse H., Wulkenhaar R.: Renormalisation of phi**4 theory on noncommutative R**4 in the matrix base. Commun. Math. Phys. 256, 305 (2005) arXiv:hep-th/0401128MathSciNetADSMATHCrossRefGoogle Scholar
  27. 27.
    Gurau R., Magnen J., Rivasseau V., Vignes-Tourneret F.: Renormalization of non-commutative phi**4(4) field theory in x space. Commun. Math. Phys. 267, 515 (2006) arXiv:hep-th/0512271MathSciNetADSMATHCrossRefGoogle Scholar
  28. 28.
    Disertori M., Gurau R., Magnen J., Rivasseau V.: Vanishing of beta function of non commutative phi(4)**4 theory to all orders. Phys. Lett. B 649, 95 (2007) arXiv:hep-th/0612251MathSciNetADSCrossRefGoogle Scholar
  29. 29.
    Geloun J.B., Gurau R., Rivasseau V.: Vanishing beta function for Grosse-Wulkenhaar model in a magnetic field. Phys. Lett. B 671, 284 (2009) arXiv:0805.4362 [hep-th]MathSciNetADSCrossRefGoogle Scholar
  30. 30.
    Conrady F., Freidel L.: On the semiclassical limit of 4d spin foam models. Phys. Rev. D 78, 104023 (2008) arXiv:0809.2280 [gr-qc]MathSciNetADSCrossRefGoogle Scholar
  31. 31.
    Barrett J.W., Dowdall R.J., Fairbairn W.J., Hellmann F., Pereira R.: Lorentzian spin foam amplitudes: graphical calculus and asymptotics. Class. Quant. Grav 27, 165009 (2010) arXiv:0907.2440 [gr-qc]MathSciNetADSCrossRefGoogle Scholar
  32. 32.
    Freidel, L., Oriti, D., Ryan, J.: A group field theory for 3d quantum gravity coupled to a scalar field. arXiv:gr-qc/0506067Google Scholar
  33. 33.
    Oriti D., Ryan J.: Group field theory formulation of 3d quantum gravity coupled to matter fields. Class. Quant. Grav 23, 6543 (2006) arXiv:gr-qc/0602010MathSciNetADSMATHCrossRefGoogle Scholar
  34. 34.
    Dowdall, R.J.: Wilson loops, geometric operators and fermions in 3d group field theory. arXiv:0911.2391 [gr-qc]Google Scholar
  35. 35.
    Fairbairn W.J., Livine E.R.: 3d spinfoam quantum gravity: matter as a phase of the group field theory. Class. Quant. Grav 24, 5277 (2007) arXiv:gr-qc/0702125MathSciNetADSMATHCrossRefGoogle Scholar
  36. 36.
    Di Mare A., Oriti D.: Emergent matter from 3d generalised group field theories. Class. Quant. Grav 27, 145006 (2010) arXiv:1001.2702 [gr-qc]MathSciNetADSCrossRefGoogle Scholar
  37. 37.
    Baratin, A., Girelli, F., Oriti, D.: Diffeomorphisms in group field theories. arXiv:1101.0590 [hep-th]Google Scholar
  38. 38.
    Ashtekar A., Campiglia M., Henderson A.: Loop quantum cosmology and spin foams. Phys. Lett. B 681, 347 (2009) arXiv:0909.4221 [gr-qc]MathSciNetADSCrossRefGoogle Scholar
  39. 39.
    Ashtekar A., Campiglia M., Henderson A.: Casting loop quantum cosmology in the spin foam paradigm. Class. Quant. Grav. 27, 135020 (2010) arXiv:1001.5147 [gr-qc]MathSciNetADSCrossRefGoogle Scholar
  40. 40.
    Freidel L., Gurau R., Oriti D.: Group field theory renormalization - the 3d case: power counting of divergences. Phys. Rev. D 80, 044007 (2009) arXiv:0905.3772 [hep-th]ADSCrossRefGoogle Scholar
  41. 41.
    Magnen J., Noui K., Rivasseau V., Smerlak M.: Scaling behaviour of three-dimensional group field theory. Class. Quant. Grav. 26, 185012 (2009) arXiv:0906.5477 [hep-th]MathSciNetADSCrossRefGoogle Scholar
  42. 42.
    Geloun J.B., Magnen J., Rivasseau V.: Bosonic colored group field theory. Eur. Phys. J. C 70, 1119 (2010) arXiv:0911.1719 [hep-th]ADSCrossRefGoogle Scholar
  43. 43.
    Geloun J.B., Krajewski T., Magnen J., Rivasseau V.: Linearized group field theory and power counting theorems. Class. Quant. Grav. 27, 155012 (2010) arXiv:1002.3592 [hep-th]ADSCrossRefGoogle Scholar
  44. 44.
    Geloun, J.B., Bonzom, V.: Radiative corrections in the Boulatov-Ooguri tensor model: the 2-point function. arXiv:1101.4294[hep-th]Google Scholar
  45. 45.
    Alexandrov, S., Roche, P.: Critical overview of loops and foams. arXiv:1009.4475 [gr-qc]Google Scholar
  46. 46.
    Gurau R.: Colored group field theory. Commun. Math. Phys 304, 69 (2011) arXiv:0907.2582 [hep-th]]MathSciNetADSMATHCrossRefGoogle Scholar
  47. 47.
    Gurau R.: Topological graph polynomials in colored group field theory. Annales Henri Poincaré 11, 565 (2010) arXiv:0911.1945 [hep-th]MathSciNetADSMATHCrossRefGoogle Scholar
  48. 48.
    Gurau R.: Lost in translation: topological singularities in group field theory. Class. Quant. Grav 27, 235023 (2010) arXiv:1006.0714 [hep-th]MathSciNetADSCrossRefGoogle Scholar
  49. 49.
    Ambjorn J., Kristjansen C.F., Makeenko Yu.M.: Higher genus correlators for the complex matrix model. Mod. Phys. Lett. A 7, 3187 (1992) arXiv:hep-th/9207020MathSciNetADSCrossRefGoogle Scholar
  50. 50.
    Ambjorn, J., Chekhov, L., Kristjansen, C.F., Makeenko, Yu.: Matrix model calculations beyond the spherical limit. Nucl. Phys. B 404, 127 (1993). Erratum-ibid. B 449, 681 (1995). arXiv:hep-th/9302014Google Scholar
  51. 51.
    Gurau R.: A diagrammatic equation for oriented planar graphs. Nucl. Phys. B 839, 580 (2010) arXiv:1003.2187 [hep-th]MathSciNetADSMATHCrossRefGoogle Scholar
  52. 52.
    Gurau R., Rivasseau V.: Parametric representation of noncommutative field theory. Commun. Math. Phys 272, 811 (2007) arXiv:math-ph/0606030MathSciNetADSMATHCrossRefGoogle Scholar
  53. 53.
    Stillwell J.: The word problem and the isomorphism problem for groups. Bull. Am. Math. Soc. 6(1), 33–56 (1982)MathSciNetMATHCrossRefGoogle Scholar
  54. 54.
    Caravelli, F.: A simple proof of orientability in the colored Boulatov model. arXiv:1012.4087 [math-ph]Google Scholar
  55. 55.
    Ferri, M., Gagliardi, C.: Crystallisation moves. Pac. J. Math. 100(1) (1982)Google Scholar
  56. 56.
    Lins, S.: Gems, computers and attractors for 3-manifolds, (Series on Knots and Everything, Vol 5). ISBN:9810219075/ISBN-13:9789810219079Google Scholar
  57. 57.
    Bonzom, V., Smerlak, M.: Bubble divergences from twisted cohomology. arXiv:1008.1476 [math-ph]Google Scholar
  58. 58.
    De Pietri R., Freidel L., Krasnov K., Rovelli C.: Barrett-Crane model from a Boulatov-Ooguri field theory over a homogeneous space. Nucl. Phys. B 574, 785 (2000) arXiv:hep-th/9907154MathSciNetADSMATHCrossRefGoogle Scholar

Copyright information

© Springer Basel AG 2011

Authors and Affiliations

  1. 1.Perimeter Institute for Theoretical PhysicsWaterlooCanada

Personalised recommendations