Annales Henri Poincaré

, Volume 12, Issue 2, pp 351–395 | Cite as

Gauge Orbit Types for Theories with Gauge Group O(n), SO(n) or Sp(n)

  • Alexander Hertsch
  • Gerd Rudolph
  • Matthias Schmidt


We determine the orbit types of the action of the group of local gauge transformations on the space of connections in a principal bundle with structure group O(n), SO(n) or Sp(n) over a closed, simply connected manifold of dimension 4. On the way we derive a classification of Howe subgroups of SO(n) up to conjugacy.


Structure Group Conjugacy Class Isomorphism Class Principal Bundle Orbit Type 
These keywords were added by machine and not by the authors. This process is experimental and the keywords may be updated as the learning algorithm improves.


Unable to display preview. Download preview PDF.

Unable to display preview. Download preview PDF.


  1. 1.
    Alvarez-Gaumé L., Ginsparg P.: The topological meaning of nonabelian anomalies. Nucl. Phys. B 243, 449–474 (1984)ADSCrossRefGoogle Scholar
  2. 2.
    Asorey M., Falceto F., López J.L., Luzón G.: Nodes, monopoles, and confinement in 2 + 1-dimensional gauge theories. Phys. Lett. B 345, 125–130 (1995)ADSGoogle Scholar
  3. 3.
    Asorey M.: Maximal non-Abelian gauges and topology of the gauge orbit space. Nucl. Phys. B 551, 399–424 (1999)MathSciNetADSzbMATHCrossRefGoogle Scholar
  4. 4.
    Atiyah M.F., Singer I.M.: Dirac operators coupled to vector potentials. Proc. Natl. Acad. Sci. USA. 81(No. 8), 2597–2600 (1984)MathSciNetADSzbMATHCrossRefGoogle Scholar
  5. 5.
    Borel A.: Topics in the Homology Theory of Fibre Bundles Lecture Notes in Mathematics 36. Springer, Berlin (1967)Google Scholar
  6. 6.
    Bott R., Tu L.W.: Differential Forms in Algebraic Topology. Springer, Berlin (1982)zbMATHGoogle Scholar
  7. 7.
    Carey A., Mickelsson J., Murray M.: Index theory, gerbes, and Hamiltonian quantization. Commun. Math. Phys. 183, 707–722 (1997)MathSciNetADSzbMATHCrossRefGoogle Scholar
  8. 8.
    Charzynski SZ., Kijowski J., Rudolph G., Schmidt M.: On the stratified classical configuration space of lattice QCD. J. Geom. Phys. 55, 137–178 (2005)MathSciNetADSzbMATHCrossRefGoogle Scholar
  9. 9.
    Charzynski SZ., Rudolph G., Schmidt M.: On the topology of the reduced classical configuration space of lattice QCD. J. Geom. Phys. 58, 1607–1623 (2008)MathSciNetADSzbMATHCrossRefGoogle Scholar
  10. 10.
    Dieudonné J.: On the Automorphisms of the Classical Groups. Memoirs of the American Mathematical Society, 2. American Mathematical Society, Providence (1980)Google Scholar
  11. 11.
    Dold A., Whitney H.: Classification of oriented sphere bundles over a 4-complex. Ann. Math. 69, 667–677 (1959)MathSciNetCrossRefzbMATHGoogle Scholar
  12. 12.
    Emmrich C., Römer H.: Orbifolds as configuration spaces of systems with gauge symmetries. Commun. Math. Phys. 129, 69–94 (1990)ADSzbMATHCrossRefGoogle Scholar
  13. 13.
    Fischer E., Rudolph G., Schmidt M.: A lattice gauge model of singular Marsden-Weinstein reduction. Part I. Kinematics. J. Geom. Phys. 57, 1193–1213 (2007)MathSciNetADSzbMATHCrossRefGoogle Scholar
  14. 14.
    Ford C., Tok T., Wipf A.: Abelian projection on the torus for general gauge groups. Nucl. Phys. B 548, 585–612 (1999)MathSciNetADSzbMATHCrossRefGoogle Scholar
  15. 15.
    Ford C., Tok T., Wipf A.: SU(N)-gauge theories in Polyakov gauge on the torus. Phys. Lett. B 456, 155–161 (1999)MathSciNetADSzbMATHCrossRefGoogle Scholar
  16. 16.
    Gribov V.N.: Quantization of non-Abelian gauge theories. Nucl. Phys. B 139, 1–19 (1978)MathSciNetADSCrossRefGoogle Scholar
  17. 17.
    Heil A., Kersch A., Papadopoulos N.A., Reifenhäuser B., Scheck F.: Anomalies from nonfree action of the gauge group. Ann. Phys. 200, 206–215 (1990)ADSzbMATHCrossRefGoogle Scholar
  18. 18.
    Huebschmann J., Rudolph G., Schmidt M.: A lattice gauge model for quantum mechanics on a stratified space. Commun. Math. Phys. 286(Nr. 2), 459–494 (2009)MathSciNetADSzbMATHCrossRefGoogle Scholar
  19. 19.
    Ireland K., Rosen M.: A Classical Introduction to Modern Number Theory. Springer, Berlin (1990)zbMATHGoogle Scholar
  20. 20.
    Kobayashi S., Nomizu K.: Foundations of Differential Geometry I. Wiley Classics Library, Wiley, New York (1996)Google Scholar
  21. 21.
    Kondracki, W., Rogulski, J.: On the notion of stratification. Institute of Mathematics, Polish Academy of Sciences, Preprint 281, Warszawa (1983)Google Scholar
  22. 22.
    Kondracki, W., Rogulski, J.: On the stratification of the orbit space for the action of automorphisms on connections. Dissertationes Mathematicae 250, Panstwowe Wydawnictwo Naukowe, Warszawa (1986)Google Scholar
  23. 23.
    Langmann E., Salmhofer M., Kovner A.: Consistent axial-like gauge fixing on hypertori. Mod. Phys. Lett. A 9(31), 2913–2926 (1994)MathSciNetADSzbMATHCrossRefGoogle Scholar
  24. 24.
    Massey, W.S.: A Basic Course in Algebraic Topology. Graduate Texts in Mathematics 127, Springer (1991)Google Scholar
  25. 25.
    Narasimhan M.S., Ramadas T.R.: Geometry of SU(2) gauge fields. Commun. Math. Phys. 67, 121–136 (1979)MathSciNetADSzbMATHCrossRefGoogle Scholar
  26. 26.
    Pflaum M.: Analytic and geometric study of stratified spaces. In: Lect. Notes Math. 1768. Springer, Berlin (2001)Google Scholar
  27. 27.
    Pontryagin L.: Classification of some skew products. Dokl. Akad. Nauk SSSR 47, 322–325 (1945)zbMATHGoogle Scholar
  28. 28.
    Rudolph G., Schmidt M., Volobuev I.P.: Classification of gauge orbit types for SU(n)-gauge theories. Math. Phys. Anal. Geom. 5, 201–241 (2002)MathSciNetzbMATHCrossRefGoogle Scholar
  29. 29.
    Rudolph G., Schmidt M., Volobuev I.P.: Partial ordering of gauge orbit types for SU(n)-gauge theories. J. Geom. Phys. 42, 106–138 (2002)MathSciNetADSzbMATHCrossRefGoogle Scholar
  30. 30.
    Rudolph G., Schmidt M., Volobuev I.P.: On the gauge orbit space stratification: a review. J. Phys. A Math. Gen. 35, R1–R50 (2002)MathSciNetADSzbMATHCrossRefGoogle Scholar
  31. 31.
    Rudolph G., Schmidt M.: On a certain stratification of the gauge orbit space. Rep. Math. Phys. 50, 99–110 (2002)MathSciNetADSzbMATHCrossRefGoogle Scholar
  32. 32.
    Schmidt M.: Classification and partial ordering of reductive Howe dual pairs of classical Lie group. J. Geom. Phys. 29, 283–318 (1999)MathSciNetADSzbMATHCrossRefGoogle Scholar
  33. 33.
    Shabanov S.V.: 2D Yang Mills theories, gauge orbit spaces and the path integral quantization. Commun. Theor. Phys. (Allahabad) 4(1), 1–62 (1995)MathSciNetGoogle Scholar
  34. 34.
    Singer I.M.: Some remarks on the Gribov ambiguity. Commun. Math. Phys. 60, 7–12 (1978)ADSzbMATHCrossRefGoogle Scholar
  35. 35.
    t‘Hooft G.: On the phase transition towards permanent quark confinement. Nucl. Phys. B 138, 1–25 (1978)MathSciNetADSCrossRefGoogle Scholar
  36. 36.
    Witten E.: An SU(2)-anomaly. Phys. Lett. B 117, 324–328 (1982)MathSciNetADSCrossRefGoogle Scholar
  37. 37.
    Wu W.T.: On Pontryagin classes I. Sci. Sin. 3, 353–367 (1954)Google Scholar
  38. 38.
    Wu W.T.: On Pontryagin classes II. Sci. Sin. 4, 455–490 (1955)zbMATHGoogle Scholar
  39. 39.
    Wu W.T.: On Pontryagin classes III. Acta Math. Sin. 4, 323–346 (1954)Google Scholar

Copyright information

© Springer Basel AG 2011

Authors and Affiliations

  • Alexander Hertsch
    • 1
  • Gerd Rudolph
    • 1
  • Matthias Schmidt
    • 1
  1. 1.Institut für Theoretische PhysikUniversität LeipzigLeipzigGermany

Personalised recommendations