Abstract
We analyze by exact Renormalization Group (RG) methods the infrared properties of an effective model of graphene, in which two-dimensional (2D) massless Dirac fermions propagating with a velocity smaller than the speed of light interact with a 3D quantum electromagnetic field. The fermionic correlation functions are written as series in the running coupling constants, with finite coefficients that admit explicit bounds at all orders. The implementation of Ward Identities in the RG scheme implies that the effective charges tend to a line of fixed points. At small momenta, the quasi-particle weight tends to zero and the effective Fermi velocity tends to a finite value. These limits are approached with a power law behavior characterized by non-universal critical exponents.
Article PDF
Similar content being viewed by others
Avoid common mistakes on your manuscript.
References
Adler S. and Bardeen W. (1969). Absence of higher-order corrections in the anomalous axial-vector divergence equation. Phys. Rev. 182: 1517–1536
Benfatto G., Falco P. and Mastropietro V. (2010). Universal relations for nonsolvable statistical models. Phys. Rev. Lett. 104: 075701
Benfatto G. and Gallavotti G. (1990). Perturbation theory of the Fermi surface in a quantum liquid. A general quasiparticle formalism and one-dimensional systems. J. Stat. Phys. 59: 541–664
Benfatto G. and Gallavotti G. (1995). Renormalization Group. Princeton University Press, NJ
Benfatto G., Gallavotti G., Procacci A. and Scoppola B. (1994). Beta function and Schwinger functions for a many fermions system in one dimension. Anomaly of the fermi surface. Commun. Math. Phys. 160: 93–171
Benfatto G. and Mastropietro V. (2005). Ward identities and chiral anomaly in the Luttinger liquid. Commun. Math. Phys. 258: 609–655
Benfatto G., Giuliani A. and Mastropietro V. (2006). Fermi liquid behavior in the 2D Hubbard model at low temperatures. Ann. Henri Poincaré 7: 809–898
Bonini M., D’Attanasio M. and Marchesini G. (1994). Ward identities and Wilson renormalization group for QED. Nucl. Phys. B 418: 81–112
Bostwick A., Ohta T., Seyller T., Horn K. and Rotenberg E. (2007). Quasiparticle dynamics in graphene. Nature Phys. 3: 36–40
Castro Neto A.H., Guinea F., Peres N., Novoselov K. and Geim K. (2009). The electronic properties of graphene. Rev. Mod. Phys. 81: 109
Disertori M. and Rivasseau V. (2000). Interacting Fermi liquid in two dimensions at finite temperature. Part I: convergent attributions Commun. Math. Phys. 215: 251–290
Disertori M. and Rivasseau V. (2000). Interacting Fermi liquid in two dimensions at finite temperature. Part II: renormalization 215: 291–341
Feldman J., Knoerrer H. and Trubowitz E. (2004). Commun. Math. Phys. 247: 1–320
Feldman J. and Trubowitz E. (1990). Perturbation theory for many fermion systems. Helvetica Phys. Acta 63: 156–260
Gallavotti G. (1985). Renormalization theory and ultraviolet stability for scalar fields via renormalization group methods. Rev. Mod. Phys. 57: 471–562
Gentile G. and Mastropietro V. (2001). Renormalization group for one-dimensional fermions. A review on mathematical results. Phys. Rep. 352: 273–437
Giuliani A. and Mastropietro V. (2004). Anomalous critical exponents in the anisotropic Ashkin–Teller model. Phys. Rev. Lett. 93: 190603
Giuliani A. and Mastropietro V. (2010). The two-dimensional Hubbard model on the honeycomb lattice. Commun. Math. Phys. 293: 301–346
Giuliani, A., Mastropietro, V.: Rigorous construction of ground state correlations in graphene: renormalization of the velocities and Ward identities. Phys. Rev. B 79, 201403(R) (2009)
González J., Guinea F. and Vozmediano M.A.H. (1994). Non-Fermi liquid behavior of electrons in the half-filled honeycomb lattice (a renormalization group approach). Nucl. Phys. B 424: 595–618
González J., Guinea F. and Vozmediano M.A.H. (1999). Marginal-Fermi-liquid behavior from two-dimensional Coulomb interaction. Phys. Rev. B 59: R2474
González J., Guinea F. and Vozmediano M.A.H. (2001). Electron–electron interactions in graphene sheets. Phys. Rev. B 63: 134421
Herbut I.F. (2006). Interactions and phase transitions on graphene’s honeycomb lattice. Phys. Rev. Lett. 97: 146401
Herbut I.F., Juricic V. and Roy B. (2009). Theory of interacting electrons on the honeycomb lattice. Phys. Rev. B 79: 085116
Jiang Z., Henriksen E.A., Tung L.C., Wang Y.-J., Schwartz M.E., Han M., Kim P. and Stormer H.L. (2007). Infrared spectroscopy of Landau levels of graphene. Phys. Rev. Lett. 98: 197403
Kotov V.N., Uchoa B. and Castro Neto A.H. (2008). Electron–electron interactions in the vacuum polarization of graphene. Phys. Rev. B 78: 035119
Li G., Luican A. and Andrei E. (2009). Scanning tunneling spectroscopy of graphene on graphite, Phys. Rev. Lett. 102: 176804
Mastropietro V. (2008). Non-Perturbative Renormalization. World Scientific, Singapore
Mishchenko E.G. (2007). Effect of electron–electron interactions on the conductivity of clean graphene. Phys. Rev. Lett 98: 216801
Novoselov K.S., Geim A.K., Morozov S.V., Jiang D., Katsnelson M.I., Grigorieva I.V., Dubonos S.V. and Firsov A.A. (2005). Two-dimensional gas of massless Dirac fermions in graphene. Nature 438: 197
Novoselov K.S., Geim A.K., Morozov S.V., Jiang D., Zhang Y., Dubonos S.V., Gregorieva I.V. and Firsov A.A. (2004). Electric field effect in atomically thin carbon films. Science 306: 666
Polchinski J. (1984). Renormalization and effective lagrangians. Nucl. Phys. B 231: 269
Rivasseau V. (1991). From Perturbative to Constructive Renormalization. Princeton University Press, NJ
Salmhofer M. (1999). Renormalization: An Introduction, Texts and Monographs in Physics. Springer, Berlin
Shankar R. (1994). Renormalization-group approach to interacting fermions. Rev. Mod. Phys. 66: 129
Son D.T. (2007). Quantum critical point in graphene approached in the limit of infinitely strong Coulomb interaction. Phys. Rev. B 75: 235423
Zhou S., Siegel D., Fedorov A. and Lanzara A. (2008). Kohn anomaly and interplay of electron– electron and electron–phonon interactions in epitaxial graphene. Phys. Rev. B 78: 193404
Author information
Authors and Affiliations
Corresponding author
Additional information
Communicated by Jean Bellissard.
Rights and permissions
About this article
Cite this article
Giuliani, A., Mastropietro, V. & Porta, M. Anomalous Behavior in an Effective Model of Graphene with Coulomb Interactions. Ann. Henri Poincaré 11, 1409–1452 (2010). https://doi.org/10.1007/s00023-010-0068-x
Received:
Accepted:
Published:
Issue Date:
DOI: https://doi.org/10.1007/s00023-010-0068-x