Annales Henri Poincaré

, Volume 11, Issue 1–2, pp 151–350 | Cite as

The Temporal Ultraviolet Limit for Complex Bosonic Many-body Models

  • Tadeusz Balaban
  • Joel Feldman
  • Horst Knörrer
  • Eugene Trubowitz
Article

Abstract

We consider the partition function for a many-body model consisting of a weakly coupled gas of bosons at any temperature T > 0 and any chemical potential μ, but with both infrared and ultraviolet cutoffs imposed in both temporal and spatial directions. We take the limit as the ultraviolet cutoff in the temporal direction is removed and develop a representation for the limit that, hopefully, provides a suitable starting point for controlling the limit as the infrared cutoffs are removed.

Preview

Unable to display preview. Download preview PDF.

Unable to display preview. Download preview PDF.

References

  1. 1.
    Balaban T., Feldman J., Knörrer H., Trubowitz E.: A functional integral representation for many boson systems. I. The partition function. Annales Henri Poincaré 9, 1229–1273 (2008)MATHCrossRefADSGoogle Scholar
  2. 2.
    Balaban T., Feldman J., Knörrer H., Trubowitz E.: A functional integral representation for many boson systems. II. Correlation functions. Annales Henri Poincaré 9, 1275–1307 (2008)MATHCrossRefADSGoogle Scholar
  3. 3.
    Balaban T., Feldman J., Knörrer H., Trubowitz E.: Power series representations for bosonic effective actions. J. Stat. Phys. 134, 839–857 (2009)MATHCrossRefMathSciNetADSGoogle Scholar
  4. 4.
    Balaban, T., Feldman, J., Knörrer, H., Trubowitz, E.: Power series representations for complex bosonic effective actions. I. A small field renormalization group step. J. Math. Phys. (to appear)Google Scholar
  5. 5.
    Balaban, T., Feldman, J., Knörrer, H., Trubowitz, E.: Power series representations for complex bosonic effective actions. II. A small field renormalization group flow. J. Math. Phys. (to appear)Google Scholar
  6. 6.
    Brydges D., Federbush P.: The cluster expansion in statistical physics. Commun. Math. Phys. 49, 233–246 (1976)CrossRefMathSciNetADSGoogle Scholar
  7. 7.
    Brydges D., Federbush P.: The cluster expansion for potentials with exponential fall-off. Commun. Math. Phys. 53, 19–30 (1977)CrossRefMathSciNetADSGoogle Scholar
  8. 8.
    Edwards R.E.: Functional Analysis: Theory and Applications. Dover, New York (1995)Google Scholar
  9. 9.
    Ginibre J.: Reduced density matrices of quantum gases. I. Limit of infinite volume. J. Math. Phys. 6, 238–251 (1965)CrossRefMathSciNetADSGoogle Scholar
  10. 10.
    Ginibre J.: Some applications of functional integration in statistical mechanics. In: DeWitt, C., Stora, R. (eds) Statistical Mechanics and Quantum Field Theory, Proceedings of the Les Houches Summer School of Theoretical Physics, pp. 327. Gordon and Breach, New York (1971)Google Scholar
  11. 11.
    Negele J.W., Orland H.: Quantum Many-Particle Systems. Addison-Wesley, Reading (1988)MATHGoogle Scholar

Copyright information

© Springer Basel AG 2010

Authors and Affiliations

  • Tadeusz Balaban
    • 1
  • Joel Feldman
    • 2
  • Horst Knörrer
    • 3
  • Eugene Trubowitz
    • 3
  1. 1.Department of MathematicsRutgers, The State University of New JerseyPiscatawayUSA
  2. 2.Department of MathematicsUniversity of British ColumbiaVancouverCanada
  3. 3.MathematikETH-ZentrumZürichSwitzerland

Personalised recommendations