Annales Henri Poincaré

, 10:1075 | Cite as

The Inner Cauchy Horizon of Axisymmetric and Stationary Black Holes with Surrounding Matter in Einstein–Maxwell Theory: Study in Terms of Soliton Methods

Open Access
Article

Abstract

We use soliton methods in order to investigate the interior electrovacuum region of axisymmetric and stationary, electrically charged black holes with arbitrary surrounding matter in Einstein–Maxwell theory. These methods can be applied since the Einstein–Maxwell vacuum equations permit the formulation in terms of the integrability condition of an associated linear matrix problem. We find that there always exists a regular inner Cauchy horizon inside the black hole, provided the angular momentum J and charge Q of the black hole do not vanish simultaneously. Moreover, the soliton methods provide us with an explicit relation for the metric on the inner Cauchy horizon in terms of that on the event horizon. In addition, our analysis reveals the remarkable universal relation (8πJ)2 + (4πQ2)2 = A+A, where A+ and A denote the areas of event and inner Cauchy horizon, respectively.

References

  1. 1.
    Ansorg M., Pfister H.: A universal constraint between charge and rotation rate for degenerate black holes surrounded by matter. Class. Quantum Grav. 25, 035009 (2008)CrossRefMathSciNetADSGoogle Scholar
  2. 2.
    Ansorg M., Hennig J.: The inner Cauchy horizon of axisymmetric and stationary black holes with surrounding matter. Class. Quantum Grav. 25, 222001 (2008)CrossRefMathSciNetADSGoogle Scholar
  3. 3.
    Ansorg M., Hennig J.: Inner Cauchy horizon of axisymmetric and stationary black holes with surrounding matter in Einstein–Maxwell theory. Phys. Rev. Lett. 102, 221102 (2009)CrossRefADSGoogle Scholar
  4. 4.
    Bardeen J.M.: Rapidly rotating stars, disks, and black holes. In: deWitt, C., deWitt, B. (eds) Black Holes (Les Houches), pp. 241–289. Gordon and Breach, London (1973)Google Scholar
  5. 5.
    Carter B.: Black hole equilibrium states. In: deWitt, C., deWitt, B. (eds) Black Holes (Les Houches), pp. 57–214. Gordon and Breach, London (1973)Google Scholar
  6. 6.
    Chruściel P.T.: On space–times with U(1) × U(1) symmetric compact Cauchy surfaces. Ann. Phys. 202, 100 (1990)CrossRefADSMATHGoogle Scholar
  7. 7.
    Chruściel, P.T.: Private communicationGoogle Scholar
  8. 8.
    Ernst F.J.: New formulation of the axially symmetric gravitational field problem II. Phys. Rev. 168, 1415 (1968)CrossRefADSGoogle Scholar
  9. 9.
    Hennig, J., Cederbaum, C., Ansorg, M.: A universal inequality for axisymmetric and stationary black holes with surrounding matter in the Einstein–Maxwell theory. Commun. Math. Phys. (2009). doi:10.1007/s00220-009-0889-y
  10. 10.
    Neugebauer G., Kramer D.: Einstein–Maxwell solitons. J. Phys. A: Math. Gen. 16, 1927 (1983)CrossRefMathSciNetADSGoogle Scholar
  11. 11.
    Neugebauer G.: Rotating bodies as boundary value problems. Ann. Phys. (Leipzig) 9(3–5), 342 (2000)MathSciNetADSMATHGoogle Scholar
  12. 12.
    Neugebauer G., Meinel R.: Progress in relativistic gravitational theory using the inverse scattering method. J. Math. Phys. 44, 3407 (2003)CrossRefMathSciNetADSMATHGoogle Scholar
  13. 13.
    Stephani H., Kramer D., MacCallum M., Hoenselaers C., Herlt E.: Exact Solutions of Einstein’s Field Equations. University Press, Cambridge (2003)MATHGoogle Scholar

Copyright information

© The Author(s) 2009

Authors and Affiliations

  1. 1.Max Planck Institute for Gravitational PhysicsGolmGermany
  2. 2.Institute of Biomathematics and BiometryHelmholtz Zentrum MünchenNeuherbergGermany

Personalised recommendations