Abstract
The 1911 Grünwald–Blaschke mapping is reviewed from the point of view of a particular Clifford algebra. This is a mapping between the group of proper Euclidean displacements of the plane and an open set in 3-dimensional real projective space. The image of the set of group elements which displace an arbitrary point to another fixed point is a line in the projective space. In this way, a correspondence is established between point-pairs in the plane and lines in 3-dimensional projective space. The space of lines in 3 dimensions is an object of classical study usually called the Klein quadric. The action of the group of planar rigid-body displacements on the Klein quadric is different from the usually considered action of the spatial group. The quadratic invariants with respect to this representation are found and interpretations in terms of point-pairs are given. Some subspaces of lines, including line complexes and congruences, are investigated and their interpretation as sets of point-pairs in the plane are given.
This is a preview of subscription content, access via your institution.


References
Bottema, O., Roth, B.: Theoretical Kinematics. Dover Publications, New York (1990)
Coolidge, J.L.: A Treatise on the Circle and the Sphere. Clarendon Press, Oxford (1916)
Grünwald, J.: Ein Abbildungsprinzip, welches die ebene Geometrie und Kinematik mit der räumlichen Geometrie verknüpft. Sitzungsberichten der kaiserl. Akademie der Wissenschaften in Wein. Mathem.-naturw. Klasse; Bd. CXX. Abt. II a, 120(2a), 677–741 (1911). (English translation: D. H. Delphenich, http://www.neo-classical-physics.info/uploads/3/4/3/6/34363841/grunwald_-_kinematic_mapping.pdf)
Guth, L., Katz, N.H.: On the Erdős distinct distance problem in the plane. Ann. Math. 181(1), 155–190 (2015)
Ivory, J.: On the attractions of homogeneous ellipsoids. Philos. Trans. R. Soc. Lond. 99, 345–372 (1809)
Jessop, C.M.: A Treatise on the Line Complex. Cambridge University Press, Cambridge (1903)
Klawitter, D., Hagemann, M.: Kinematic mappings for Cayley–Klein geometries via Clifford algebras. Beiträge Algebra Geom. Contrib. Algebra Geom. 54(2), 737–761 (2013)
Murphy, B., Petridis, G., Pham, T., Rudnev, M., Stevens, S.: On the pinned distances problem in positive characteristic. J. Lond. Math. Soc. 105(1), 469–499 (2022). https://doi.org/10.1112/jlms.12524.
Picard, E.: Notice sur la vie et les travaux de Georges–Henri Halphen, Membre de la Section de Géométrie. C. R. hebd. séances l’Acad. Sci. 110(N10), 489–497 (1890)
Pottmann, H., Wallner, J.: Computational Line Geometry Mathematics and Visualization. Springer, Berlin (2010)
Rudnev, M., Selig, J.M.: On the use of Klein quadric for geometric incidence problems in two dimensions. SIAM J. Discrete Math. 30(2), 934–954 (2016). https://doi.org/10.1137/16M1059412.
Selig, J.M.: Geometrical Fundamentals of Robotics, 2nd edn Springer, New York (2005)
Semple, J.G., Roth, L.: Introduction to Algebraic Geometry. Clarendon Press, Oxford (1985).(First published 1949)
Tao, T.: Lines in the Euclidean Group SE(2) (2011). https://terrytao.wordpress.com/2011/03/05/lines-in-the-euclidean-group-se2/
Author information
Authors and Affiliations
Corresponding author
Ethics declarations
Conflict of interest
There is no data associated with this work. The author states that there is no conflict of interest.
Additional information
Publisher's Note
Springer Nature remains neutral with regard to jurisdictional claims in published maps and institutional affiliations.
Rights and permissions
Springer Nature or its licensor holds exclusive rights to this article under a publishing agreement with the author(s) or other rightsholder(s); author self-archiving of the accepted manuscript version of this article is solely governed by the terms of such publishing agreement and applicable law.
About this article
Cite this article
Selig, J.M. Points in the plane, lines in space. J. Geom. 113, 46 (2022). https://doi.org/10.1007/s00022-022-00661-3
Received:
Revised:
Accepted:
Published:
DOI: https://doi.org/10.1007/s00022-022-00661-3
Mathematics Subject Classification
- Primary 53A20
- Secondary 51A10, 53A25