Skip to main content
Log in

Flat fronts with polyhedral symmetry in hyperbolic three-space

  • Published:
Journal of Geometry Aims and scope Submit manuscript

Abstract

Flat fronts with symmetry similar to regular polyhedrons are studied. A flat front is a flat surface in hyperbolic three-space admitting a certain kind of singularities. Explicit descriptions of regular-polyhedral flat fronts (tetrahedral, cubic, octahedral, dodecahedral and icosahedral flat fronts) are given and a characterization of them is shown.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Subscribe and save

Springer+ Basic
$34.99 /Month
  • Get 10 units per month
  • Download Article/Chapter or eBook
  • 1 Unit = 1 Article or 1 Chapter
  • Cancel anytime
Subscribe now

Buy Now

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Fig. 1
Fig. 2
Fig. 3

Similar content being viewed by others

References

  1. Gálvez, J.A., Martínez, A., Milán, F.: Flat surfaces in hyperbolic 3-space. Math. Ann. 316, 419–435 (2000)

    Article  MathSciNet  Google Scholar 

  2. Kokubu, M., Rossman, W., Saji, K., Umehara, M., Yamada, K.: Singularities of flat fronts in hyperbolic space. Pacific J. Math. 221(2), 303–351 (2005)

  3. Kokubu, M., Rossman, W., Umehara, M., Yamada, K.: Flat fronts in hyperbolic 3-space and their caustics. J. Math. Soc. Jpn. 59(1), 265–299 (2007)

    Article  MathSciNet  Google Scholar 

  4. Kokubu, M., Rossman, W., Umehara, M., Yamada, K.: Asymptotic behavior of flat surfaces in hyperbolic 3-space. J. Math. Soc. Jpn. 61(3), 799–852 (2009)

    Article  MathSciNet  Google Scholar 

  5. Kokubu, M., Umehara, M., Yamada, K.: An elementary proof of Small’s formula and an analogue for Legendrian curves in\({\rm PSL(2},{\mathbf{C}})\). Osaka J. Math. 40(3), 697–715 (2003)

  6. Kokubu, M., Umehara, M., Yamada, K.: Flat fronts in hyperbolic 3-space. Pacific J. Math. 216(1), 149–175 (2004)

    Article  MathSciNet  Google Scholar 

  7. Martínez, A., dos Santos, J.P., Tenenblat, K.: Helicoidal flat surfaces in hyperbolic 3-space. Pacific J. Math. 264(1), 195–211 (2013)

    Article  MathSciNet  Google Scholar 

  8. Rossman, W., Umehara, M., Yamada, K.: Irreducible constant mean curvature 1 surfaces in hyperbolic space with positive genus. Tôhoku Math. J. 49, 449–484 (1997)

    Article  MathSciNet  Google Scholar 

  9. Sasaki, S.: On complete flat surfaces in hyperbolic 3-space. Kodai Math. Sem. Rep. 25, 449–457 (1973)

    Article  MathSciNet  Google Scholar 

  10. Umehara, M., Yamada, K.: Surfaces of constant mean curvature-\(c\)in\(H^3(-c^2)\)with prescribed hyperbolic Gauss map. Math. Ann. 304, 203–224 (1996)

  11. Volkov, Yu. A., Vladimirova, S. M.: Isometric immersions of a Euclidean plane in Lobachevskii space, Math. Notices, Acad. Sci. USSR 10 (1972), 619–622, Russian Original (1971)

  12. Xu, Y.: Symmetric minimal surfaces in\({\mathbb{R}}^3\). Pacific J. Math. 171(1), 275–296 (1995)

Download references

Acknowledgements

The author would like to thank the reviewer for helpful comments.

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Masatoshi Kokubu.

Ethics declarations

Conflict of interest

The author states that there is no conflict of interest.

Additional information

Dedicated to Professor Masaaki Umehara and Professor Kotaro Yamada on the occasion of their sixtieth birthdays.

Publisher's Note

Springer Nature remains neutral with regard to jurisdictional claims in published maps and institutional affiliations.

The author was supported by Grant-in-Aid for Scientific Research (C) No. 20K03617 from the Japan Society for the Promotion of Science.

Rights and permissions

Reprints and permissions

About this article

Check for updates. Verify currency and authenticity via CrossMark

Cite this article

Kokubu, M. Flat fronts with polyhedral symmetry in hyperbolic three-space. J. Geom. 113, 15 (2022). https://doi.org/10.1007/s00022-022-00633-7

Download citation

  • Received:

  • Revised:

  • Accepted:

  • Published:

  • DOI: https://doi.org/10.1007/s00022-022-00633-7

Keywords

Mathematics Subject Classification

Navigation