Skip to main content
Log in

Holomorphic representation of minimal surfaces in simply isotropic space

  • Published:
Journal of Geometry Aims and scope Submit manuscript

Abstract

It is known that minimal surfaces in Euclidean space can be represented in terms of holomorphic functions. For example, we have the well-known Weierstrass representation, where part of the holomorphic data is chosen to be the stereographic projection of the normal of the corresponding surface, and also the Björling representation, where it is prescribed a curve on the surface and the unit normal on this curve. In this work, we are interested in the holomorphic representation of minimal surfaces in simply isotropic space, a three-dimensional space equipped with a rank 2 metric of index zero. Since the isotropic metric is degenerate, a surface normal cannot be unequivocally defined based on metric properties only, which leads to distinct definitions of an isotropic normal. As a consequence, this may also lead to distinct forms of a Weierstrass and of a Björling representation. Here, we show how to represent simply isotropic minimal surfaces in accordance with the choice of an isotropic surface normal.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Fig. 1
Fig. 2
Fig. 3

Similar content being viewed by others

Notes

  1. Any conformal minimal immersion has harmonic coordinates and, consequently, each of the three coordinates can be locally seen as the real part of a holomorphic function on the plane.

  2. By the center of the sphere \(\varSigma ^2\) we mean its focus.

  3. The correspondence with minimal surfaces in \(\mathbb {I}^3\) is a special feature of \(\mathbb {E}_1^4\) since a zero mean curvature surface in 4d Euclidean space with zero Gaussian curvature must be a plane.

References

  1. Ahlfors, L.V.: Complex Analysis: An Introduction to the Theory of Analytic Functions of One Complex Variable. McGraw-Hill, Cambridge (1979)

    MATH  Google Scholar 

  2. Aydin, M.E., Erdur, A., Ergut, M.: Affine factorable surfaces in isotropic spaces. TWMS J. Pure Appl. Math. 11, 72 (2020)

    MathSciNet  Google Scholar 

  3. Barbosa, J.L.M., Colares, A.G.: Minimal surfaces in \(\mathbb{R}^3\). Springer, Berlin Heidelberg (1986)

  4. Da Silva, L.C.B.: The geometry of Gauss map and shape operator in simply isotropic and pseudo-isotropic spaces. J. Geom. 110, 31 (2019)

    Article  MathSciNet  Google Scholar 

  5. Da Silva, L.C.B.: Rotation minimizing frames and spherical curves in simply isotropic and pseudo-isotropic 3-spaces. Tamkang J. Math. 51, 31 (2020)

    Article  MathSciNet  Google Scholar 

  6. Da Silva, L.C.B.: Differential geometry of invariant surfaces in simply isotropic and pseudo-isotropic spaces. Math. J. Okayama Univ. 63, 15 (2021)

    MathSciNet  MATH  Google Scholar 

  7. Kelleci, A., Da Silva, L.C.B.: Invariant surfaces with coordinate finite-type Gauss map in simply isotropic space. J. Math. Anal. Appl. 495, 124673 (2021)

    Article  MathSciNet  Google Scholar 

  8. López, R., Weber, M.: Explicit Björling surfaces with prescribed geometry. Michigan Math. J. 67, 561 (2018)

    Article  MathSciNet  Google Scholar 

  9. Ma, X., Wang, C., Wang, P.: Global geometry and topology of spacelike stationary surfaces in the 4-dimensional Lorentz space. Adv. Math. 249, 311–347 (2013)

    Article  MathSciNet  Google Scholar 

  10. Pavković, B.: Relative differential geometry of surfaces in isotropic space. Rad JAZU 450, 129 (1990)

    MathSciNet  MATH  Google Scholar 

  11. Pottmann, H., Grohs, P., Mitra, N.J.: Laguerre minimal surfaces, isotropic geometry and linear elasticity. Adv. Comput. Math. 31, 391–419 (2009)

    Article  MathSciNet  Google Scholar 

  12. Sachs, H.: Isotrope Geometrie des Raumes. Vieweg, Braunschweig/Wiesbaden (1990)

    Book  Google Scholar 

  13. Sato, Y.: \(d\)-minimal surfaces in three-dimensional singular semi-Euclidean space\(\mathbb{R}^{0,2,1}\). Tamkang J. Math. 52, 37–67 (2021)

  14. Schwarz, H.A.: Miscellen aus dem Gebiete der Minimalflächen. J. Reine Angew. Math. 80, 280 (1875)

    MathSciNet  MATH  Google Scholar 

  15. Strubecker, K.: Differentialgeometrie des isotropen Raumes. III. Flächentheorie. Math. Z. 48, 369–427 (1942)

    Article  MathSciNet  Google Scholar 

  16. Strubecker, K.: Über Potentialflächen. Arch. Math. 5, 32 (1954)

    Article  MathSciNet  Google Scholar 

  17. Strubecker, K.: Über das isotrope Gegenstück\(z=\frac{3}{2}\cdot \Im (x+iy)^{2/3}\)der Minimalfläche von Enneper. Abh. Math. Semin. Univ. Hambg. 44, 152 (1975)

  18. Strubecker, K.: Über die isotropen Gegenstücke der Minimalfläche von Scherk. J. Reine Angew. Math. 293/294, 22 (1977)

    MathSciNet  MATH  Google Scholar 

  19. Struve, R.: Orthogonal Cayley-Klein groups. Results. Math. 48, 168 (2005)

    Article  MathSciNet  Google Scholar 

  20. Weierstrass, K.: Untersuchungen über die Flächen, deren mittlere Krümmung überall gleich Null ist. In: Mathematische Werke vol. 3, pp. 39–52. Cambridge University Press, Cambridge (2013). (Reprinted from: Monatsber. Königl. Preuss. Akad. Wiss. Berlin, 1866, pp. 612–625).

Download references

Acknowledgements

We would like to thank useful discussions with Alev Kelleci Akbay (Firat University) and Yuichiro Sato (Tokyo Metropolitan University). This work has been financially supported by the Morá Miriam Rozen Gerber scholarship for Brazilian postdocs.

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Luiz C. B. da Silva.

Ethics declarations

Conflict of interest

The author declares he has no conflict of interest.

Additional information

Publisher's Note

Springer Nature remains neutral with regard to jurisdictional claims in published maps and institutional affiliations.

Rights and permissions

Reprints and permissions

About this article

Check for updates. Verify currency and authenticity via CrossMark

Cite this article

da Silva, L.C.B. Holomorphic representation of minimal surfaces in simply isotropic space. J. Geom. 112, 35 (2021). https://doi.org/10.1007/s00022-021-00598-z

Download citation

  • Received:

  • Revised:

  • Accepted:

  • Published:

  • DOI: https://doi.org/10.1007/s00022-021-00598-z

Keywords

Mathematics Subject Classification

Navigation