Four-dimensional almost Einstein manifolds with skew-circulant stuctures


We consider a four-dimensional Riemannian manifold M with an additional structure S, whose fourth power is minus identity. In a local coordinate system the components of the metric g and the structure S form skew-circulant matrices. Both structures S and g are compatible, such that an isometry is induced in every tangent space of M. By a special identity for the curvature tensor, generated by the Riemannian connection of g, we determine classes of Einstein and almost Einstein manifolds. For such manifolds we obtain propositions for the sectional curvatures of some characteristic 2-planes in a tangent space of M. We consider a Hermitian manifold associated with the studied manifold and find conditions for g, under which it is a Kähler manifold. We construct some examples of the considered manifolds on Lie groups.

This is a preview of subscription content, access via your institution.


  1. 1.

    Davis, P.J.: Circulant matrices. A Wiley-Interscience Publication. Pure and Applied MathematicsWiley, New York (1979)

    MATH  Google Scholar 

  2. 2.

    Dzhelepov, G., Dokuzova, I., Razpopov, D.: On a three-dimensional Riemannian manifold with an additional structure. Plovdiv Univ Paisiĭ Khilendarski Nauchn. Trud. Mat. 38(3), 17–27 (2011)

    MathSciNet  MATH  Google Scholar 

  3. 3.

    Gray, R.M.: Toeplitz and circulant matrices: a review. Found. Trends Commun. Inf. Theory 2(3), 155–239 (2006)

    Article  Google Scholar 

  4. 4.

    Gray, A.: Curvature identities for Hermitian and almost Hermitian manifolds. Tôhoku Math. J. (2) 28(4), 601–612 (1976)

    MathSciNet  Article  Google Scholar 

  5. 5.

    Gray, A., Hervella, L.M.: The sixteen classes of almost Hermitian manifolds and their linear invariants. Ann. Mat. Pura Appl. (4) 123, 35–58 (1980)

    MathSciNet  Article  Google Scholar 

  6. 6.

    Gray, A., Vanhecke, L.: Almost Hermitian manifolds with constant holomorphic sectional curvatures. Časopis Pést. Mat. 104(2), 170–179 (1979)

    MathSciNet  MATH  Google Scholar 

  7. 7.

    Jiang, X.Y., Hong, K.: Explicit determinants of the k-Fibonacci and k-Lucas RSFPLR circulant matrix in codes. In: Yang, Y., Ma, M., Liu, B. (eds.) Information Computing and Applications. ICICA 2013 Communications in Computer and Information Science, vol. 391, pp. 625–637. Springer, Berlin (2013)

    Google Scholar 

  8. 8.

    Liu, K., Yang, X.: Ricci curvatures on Hermitian manifolds. Trans. Am. Math. Soc. 369(7), 5157–5196 (2017)

    MathSciNet  Article  Google Scholar 

  9. 9.

    Muzychuk, M.: A Solution of the isomorphism problem for circulant graphs. Proc. Lond. Math. Soc. (3) 88(1), 1–41 (2004)

    MathSciNet  Article  Google Scholar 

  10. 10.

    Matsuo, K.: Pseudo-Bochner curvature tensor on Hermitian manifolds. Colloq. Math. 80(2), 201–209 (1999)

    MathSciNet  Article  Google Scholar 

  11. 11.

    Olson, B., Shaw, S., Shi, C., Pierre, C., Parker, R.G.: Circulant matrices and their application to vibration analysis. Appl. Mech. Rev. 66(4), 1–41 (2014)

    Article  Google Scholar 

  12. 12.

    Prvanović, M.: Conformally invariant tensors of an almost Hermitian manifold associated with the holomorphic curvature tensor. J. Geom. 103(1), 89–101 (2012)

    MathSciNet  Article  Google Scholar 

  13. 13.

    Razpopov, D.: Four-dimensional Riemannian manifolds with two circulant structures. Math. Educ. Math., 44 (2015). In: Proceedings of 44-th Spring Conference of UBM, SOK Kamchia, Bulgaria, pp. 179–185.

  14. 14.

    Roth, R.M., Lempel, A.: Application of circulant matrices to the construction and decoding of linear codes. IEEE Trans. Inf. Theory 36(5), 1157–1163 (1990)

    MathSciNet  Article  Google Scholar 

  15. 15.

    Vanhecke, L.: Some almost Hermitian manifolds with constant holomorphic sectional curvature. J. Differ. Geom. 12(4), 461–471 (1977)

    MathSciNet  Article  Google Scholar 

  16. 16.

    Yang, B., Zheng, F.: On curvature tensors of Hermitian manifolds. Commun. Anal. Geom. 26(5), 1195–1222 (2018)

    MathSciNet  Article  Google Scholar 

  17. 17.

    Yano, K.: Differential Geometry on Complex and Almost Complex Spaces. International Series of Monographs in Pure and Applied Mathematics 49A Pergamon Press Book. The Macmillan and Co., New York (1965)

    MATH  Google Scholar 

Download references


The authors are grateful to Prof. G. Dzhelepov for his valuable comments.

Author information



Corresponding author

Correspondence to Iva Dokuzova.

Ethics declarations

Conflict of interest

On behalf of all authors, the corresponding author states that there is no conflict of interest.

Additional information

Publisher's Note

Springer Nature remains neutral with regard to jurisdictional claims in published maps and institutional affiliations.

This work is partially supported by Project MU19-FMI-020 of the Scientific Research Fund, Paisii Hilendarski University of Plovdiv, Bulgaria.

Rights and permissions

Reprints and Permissions

About this article

Verify currency and authenticity via CrossMark

Cite this article

Dokuzova, I., Razpopov, D. Four-dimensional almost Einstein manifolds with skew-circulant stuctures. J. Geom. 111, 9 (2020).

Download citation


  • Riemannian manifold
  • Einstein manifold
  • sectional curvatures
  • Ricci curvature
  • Lie group

Mathematics Subject Classification

  • 53B20
  • 53C15
  • 53C25
  • 53C55