Skip to main content
Log in

Spaces of harmonic maps of the projective plane to the four-dimensional sphere

  • Published:
Journal of Geometry Aims and scope Submit manuscript

Abstract

The spaces of harmonic maps of the projective plane to the four-dimensional sphere are investigated in this paper by means of twistor lifts. It is shown that such spaces are empty in case of even harmonic degree. In case of harmonic degree less than 6 it was shown that such spaces are path-connected and an explicit parameterization of the canonical representatives was found. In addition, the last section provides comparisons with the known results for harmonic maps of the two-dimensional sphere to the four-dimensional sphere of harmonic degree less than 6.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Institutional subscriptions

Similar content being viewed by others

References

  1. Barbosa, J.: On minimal immersions of \(S^2\)into\(S^{2m}\). Trans. Am. Math. Soc. 210, 75–106 (1975)

  2. Bolton, J., Woodward, L.M.: Linearly full harmonic 2-spheres in \(S^{4}\)of area \(20\pi \). Internat. J. Math. 12, 535–554 (2001)

  3. Bolton, J., Woodward, L.M.: Higher singularities and the twistor fibration \(\pi :{\mathbb{C}}P^{3}\rightarrow S^{4}\). Geom. Dedicata 80, 231–245 (2000)

  4. Bolton, J., Woodward, L.M.: The space of harmonic two-spheres in the unit four-sphere. Tohoku Math. J. 58, 231–236 (2006)

    Article  MathSciNet  Google Scholar 

  5. Bryant, R.L.: Conformal and minimal immersions of compact surfaces into the 4-sphere. J. Differ. Geom. 17, 455–473 (1982)

    Article  MathSciNet  Google Scholar 

  6. Calabi, E.: Minimal immersions of surfaces in euclidean spheres. J. Differ. Geom. 1, 111–125 (1967)

    Article  MathSciNet  Google Scholar 

  7. Calabi, E.: Quelques applications de l’analyse complexe aux surfaces d’aire minima. In: H. Rossi (Ed.) Topics in Complex Manifolds. 59–81, Les Presses de l’Université de Montréal (1968)

  8. Eells, J., Lemaire, L.: A report on harmonic maps. Bull. Lond. Math. Soc. 10, 1–68 (1978)

    Article  MathSciNet  Google Scholar 

  9. Eells, J., Lemaire, L.: Another report on harmonic maps. Bull. Lond. Mate. Soc. 20(5), 385–524 (1988)

    Article  MathSciNet  Google Scholar 

  10. Eells, J., Sampson, J.H.: Harmonic mappings of Riemannian manifolds. Am. J. Math. 86, 109–160 (1964)

    Article  MathSciNet  Google Scholar 

  11. El Soufi, A., Ilias, S.: Laplacian eigenvalues functionals and metric deformations on compact manifolds. J. Geom. Phys. 58(1), 89–104 (2008)

    Article  MathSciNet  Google Scholar 

  12. Furuta, M., Guest, M., Ohnita, Y., Kotani, M.: On the fundamental group of the space of harmonic 2-spheres in the n-sphere. Math.Z. 215, 503–518 (1994)

    Article  MathSciNet  Google Scholar 

  13. Hersch, J.: Quatre propriétés isopérimétriques de membranes sphériques homogènes. C. R. Acad. Sci. Paris Sér A-B 270, A1645–A1648 (1970)

    MATH  Google Scholar 

  14. Karpukhin M.: Index of minimal spheres and isoperimetric eigenvalue inequalities. Preprint arXiv:1905.03174.

  15. Karpukhin M., Nadirashvili N., Penskoi A. V., Polterovich I.: An isoperimetric inequality for Laplace eigenvalues on the sphere. To appear in J. Diff. Geom. Preprint arXiv:1706.05713.

  16. Kotani, M.: Connectedness of the space of minimal 2-spheres\(S^{2m}(1)\). Proc. Am. Math. Soc. 120, 803–810 (1994)

  17. Li, P., Yau, S.-T.: A new conformal invariant and its applications to the Willmore conjecture and the first eigenvalue of compact surfaces. Invent. Math. 69(2), 269–291 (1982)

    Article  MathSciNet  Google Scholar 

  18. Loo, B.: The space of harmonic maps of S2 into S4. Trans. Am. Math. Soc. 313, 81–102 (1989)

    MathSciNet  MATH  Google Scholar 

  19. Nadirashvili, N.: Berger’s isoperimetric problem and minimal immersions of surfaces. Geom. Funct. Anal. 6(5), 877–897 (1996)

    Article  MathSciNet  Google Scholar 

  20. Nadirashvili, N., Penskoi, A.V.: An isoperimetric inequality for the second non-zero eigenvalue of the Laplacian on the projective plane. Geom. Funct. Anal. 28(5), 1368–1393 (2018)

    Article  MathSciNet  Google Scholar 

  21. Nadirashvili, N., Sire, Y.: Maximization of higher order eigenvalues and applications. Mosc. Math. J. 15(4), 767–775 (2015). Preprint arXiv:1504.07465

    Article  MathSciNet  Google Scholar 

  22. Nadirashvili, N., Sire, Y.: Isoperimetric inequality for the third eigenvalue of the Laplace-Beltrami operator on \({\mathbb{S}}^2\). J. Diff. Geom. 107(3), 561–571 (2017). Preprint arXiv:1506.07017

  23. Penskoi, A.V.: Extremal metrics for the eigenvalues of the Laplace-Beltrami operator on surfaces (in Russian). Uspekhi Mat. Nauk 68(6(414)), 107–168 (2013). English translation in Russian Math. Surveys, 68:6, 1073–1130 (2013)

    Article  MathSciNet  Google Scholar 

  24. Penskoi, A.V.: Isoperimetric inequalities for higher eigenvalues of the Laplace-Beltrami operator on surfaces. (Russian) Tr. Mat. Inst. Steklova 305, Algebraicheskaya Topologiya Kombinatorika i Matematicheskaya Fizika, 291–308 (2019)

  25. Reckziegel, H.: Horizontal lifts of isometric immersions into the bundle space of a pseudo-Riemannian submersion. Global Differential Geometry and Global Analysis, Lecture Notes in Mathematics 1156, 18–27, Springer (1985)

  26. Wong, Y.-C., Au-Yeung, Y.-H.: An Elementary and Simple Proof of the Connectedness of the Classical Groups. Am. Math. Mon. 74(8), 964–966 (1967)

    Article  MathSciNet  Google Scholar 

Download references

Acknowledgements

Author is thankful to Alexei V. Penskoi for attaching the author’s attention to this problem, helpful remarks and useful conversations.

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Ravil Gabdurakhmanov.

Additional information

Publisher's Note

Springer Nature remains neutral with regard to jurisdictional claims in published maps and institutional affiliations.

Supported in part by the Simons Foundation.

Rights and permissions

Reprints and permissions

About this article

Check for updates. Verify currency and authenticity via CrossMark

Cite this article

Gabdurakhmanov, R. Spaces of harmonic maps of the projective plane to the four-dimensional sphere. J. Geom. 111, 40 (2020). https://doi.org/10.1007/s00022-020-00550-7

Download citation

  • Received:

  • Revised:

  • Published:

  • DOI: https://doi.org/10.1007/s00022-020-00550-7

Keywords

Mathematics Subject Classification

Navigation