Journal of Geometry

, 109:19 | Cite as

Decomposing cubes into smaller cubes

  • Peter Connor
  • Phillip Marmorino


We explore the decomposition of n-dimensional cubes into smaller n-dimensional cubes. Let c(n) be the smallest integer such that if \(k\ge c(n)\) then there is a decomposition of the n-dimensional cube into k smaller n-dimensional cubes. We prove that \(c(n)\ge 2^{n+1}-1\) for \(n\ge 3\), improving on Hadwiger’s result that \(c(n)\ge 2^n+2^{n-1}\). We also show \(c(n)\le e^2n^n\) if \(n+1\) is not prime and \(c(n)\le 1.8n^{n+1}\) if \(n+1\) is prime, improving on upper bounds proven by Erdös, Hudelson, and Meier.


Tiling Partitions Hypercubes Cube Decomposition 

Mathematics Subject Classification

Primary 51M04 Secondary 11D45 11H31 


  1. 1.
    Brauer, A.: On a problem of partitions. Am. J. Math. 64, 299–312 (1942)CrossRefzbMATHGoogle Scholar
  2. 2.
    Dehn, M.: Über die zerlegung von rechtecken in rechtecke. Math. Ann. 57, 314–332 (1903)MathSciNetCrossRefzbMATHGoogle Scholar
  3. 3.
    Erdös, P.: Remarks on some problems in number theory. Papers Presented at the Fifth Balkan Mathematical Congress (Belgrade, 1974), Math. Balcanica 4, 197–202 (1974)Google Scholar
  4. 4.
    Fine, N.J., Niven, I.: Problem E724. Am. Math. Mon. 53, 271 (1946)CrossRefGoogle Scholar
  5. 5.
    Fine, N.J., Niven, I.: Problem E724. Solution 54, 41–42 (1947)Google Scholar
  6. 6.
    Hudelson, M.: Dissecting d-cubes into smaller d-cubes. J. Comb. Theory Ser. A 81, 190–200 (1998)MathSciNetCrossRefzbMATHGoogle Scholar
  7. 7.
    Meier, C.: Decomposition of a cube into smaller cubes. Am. Math. Mon. 81(6), 630–631 (1974)MathSciNetCrossRefzbMATHGoogle Scholar

Copyright information

© Springer International Publishing AG, part of Springer Nature 2018

Authors and Affiliations

  1. 1.Department of Mathematical SciencesIndiana University South BendSouth BendUSA

Personalised recommendations