Advertisement

Journal of Geometry

, 109:15 | Cite as

On automorphism groups of toroidal circle planes

  • Brendan Creutz
  • Duy Ho
  • Günter F. Steinke
Article

Abstract

Schenkel proved that the automorphism group of a flat Minkowski plane is a Lie group of dimension at most 6 and described planes whose automorphism group has dimension at least 4 or one of whose kernels has dimension 3. We extend these results to the case of toroidal circle planes.

Notes

Acknowledgements

The authors would like to thank the referee for the careful reading and helpful suggestions. The second author was supported by a UC Doctoral Scholarship.

References

  1. 1.
    Arens, R.: Topologies for homeomorphism groups. Am. J. Math. 68, 593–610 (1946)MathSciNetCrossRefMATHGoogle Scholar
  2. 2.
    Dugundji, J.: Topology. Allyn and Bacon Inc., Boston (1966)MATHGoogle Scholar
  3. 3.
    Hartmann, E.: Beispiele nicht einbettbarer reeller Minkowski–Ebenen. Geom. Dedicata 10(1–4), 155–159 (1981)MathSciNetCrossRefMATHGoogle Scholar
  4. 4.
    Ho, D.: On the classification of toroidal circle planes. PhD thesis, University of Canterbury (2017)Google Scholar
  5. 5.
    Munkres, J.R.: Topology: a first course. Prentice-Hall Inc., Englewood Cliffs (1975)MATHGoogle Scholar
  6. 6.
    Polster, B.: Toroidal circle planes that are not Minkowski planes. J. Geom. 63, 154–167 (1998)MathSciNetCrossRefMATHGoogle Scholar
  7. 7.
    Polster, B., Steinke, G.F.: Geometries on Surfaces. Encyclopedia of Mathematics and its Applications, vol. 84. Cambridge University Press, Cambridge (2001)MATHGoogle Scholar
  8. 8.
    Salzmann, H.: Topological planes. Adv. Math. 2, 1–60 (1967)MathSciNetCrossRefMATHGoogle Scholar
  9. 9.
    Salzmann, H., et al.: Compact Projective Planes. De Gruyter Expositions in Mathematics, 21. Walter de Gruyter & Co., Berlin (1995)CrossRefGoogle Scholar
  10. 10.
    Schenkel, A.: Topologische Minkowski–Ebenen. Dissertation, Erlangen-Nürnberg (1980)Google Scholar
  11. 11.
    Steinke, G.F.: The automorphism group of locally compact connected topological Benz planes. Geom. Dedicata 16, 351–357 (1984)MathSciNetCrossRefMATHGoogle Scholar
  12. 12.
    Steinke, G.F.: Some Minkowski planes with 3-dimensional automorphism group. J. Geom. 25(1), 88–100 (1985)MathSciNetCrossRefMATHGoogle Scholar
  13. 13.
    Steinke, G.F.: A family of flat Minkowski planes admitting 3-dimensional simple groups of automorphisms. Adv. Geom. 4(3), 319–340 (2004)MathSciNetCrossRefMATHGoogle Scholar
  14. 14.
    Steinke, G.F.: Modified classical flat Minkowski planes. Adv. Geom. 17(3), 379–396 (2017)MathSciNetCrossRefMATHGoogle Scholar
  15. 15.
    Strambach, K.: Sphärische Kreisebenen. Math. Z. 113, 266–292 (1970)MathSciNetCrossRefMATHGoogle Scholar

Copyright information

© Springer International Publishing AG, part of Springer Nature 2018

Authors and Affiliations

  1. 1.School of Mathematics and StatisticsUniversity of CanterburyChristchurchNew Zealand

Personalised recommendations