Monge surfaces and planar geodesic foliations


A Monge surface is a surface obtained by sweeping a generating plane curve along a trajectory that is orthogonal to the moving plane containing the curve. Locally, they are characterized as being foliated by a family of planar geodesic lines of curvature. We call surfaces with the latter property PGF surfaces, and investigate the global properties of these two naturally defined objects. The only compact orientable PGF surfaces are tori; these are globally Monge surfaces, and they have a simple characterization in terms of the directrix. We show how to produce many examples of Monge tori and Klein bottles, as well as tori that do not have a closed directrix.

This is a preview of subscription content, log in to check access.


  1. 1.

    Bates, L., Melko, O.: On curves of constant torsion. I. J. Geom. 104, 213–227 (2013)

    MathSciNet  Article  MATH  Google Scholar 

  2. 2.

    Bishop, R.: There is more than one way to frame a curve. Am. Math. Mon. 82, 246–251 (1975)

    MathSciNet  Article  MATH  Google Scholar 

  3. 3.

    Brander, D., Gravesen, J.: Surfaces foliated by planar geodesics: a model for curved wood design. In: Swart, D., Séquin, C., Fenyvesi, K. (eds.) Proceedings of Bridges 2017: Mathematics, Art, Music, Architecture, Education, Culture, Phoenix, Arizona, pp. 487–490 (2017). Tessellations Publishing.

  4. 4.

    Chicone, C., Kalton, N.: Flat embeddings of the Möbius strip in \(R^3\). Commun. Appl. Nonlinear Anal. 9, 31–50 (2002)

  5. 5.

    Darboux, G.: Lecons sur la théorie générale des surfaces, vol. I. Gauthier-Villars, Paris (1887)

    Google Scholar 

  6. 6.

    Eisenhart, L.: A Treatise on the Differential Geometry of Curves and Surfaces. The Atheneum Press, Boston (1909)

    Google Scholar 

  7. 7.

    Fenchel, W.: On the differential geometry of closed space curves. Bull. Am. Math. Soc. 57, 44–54 (1951)

    MathSciNet  Article  MATH  Google Scholar 

  8. 8.

    Monge, G.: Application de l’analyse a la géométrie, 5th edn. Bachelier, Paris (1850)

    Google Scholar 

  9. 9.

    Raffy, L.: Sur les surfaces á lignes de courbure planes, dont les plans enveloppent un cylindre. Ann. de l’Éc. Norm. 3(18), 343–370 (1901)

    MATH  Google Scholar 

  10. 10.

    Randrup, T., Røgen, P.: Sides of the Möbius strip. Arch. Math. 66, 511–521 (1996)

    MathSciNet  Article  MATH  Google Scholar 

  11. 11.

    Scherrer, W.: Eine Kennzeichnung der Kugel. Vierteljschr. Naturforsch. Ges. Zürich 85, 40–46 (1940)

    MathSciNet  MATH  Google Scholar 

  12. 12.

    Weiner, J.: Closed curves of constant torsion. II. Proc. Am. Math. Soc. 67, 306–308 (1977)

    MathSciNet  Article  MATH  Google Scholar 

  13. 13.

    Wunderlich, W.: Über ein abwickelbares Möbiusband. Monatsh. Math. 66, 276–289 (1962)

    MathSciNet  Article  MATH  Google Scholar 

Download references

Author information



Corresponding author

Correspondence to David Brander.

Rights and permissions

Reprints and Permissions

About this article

Verify currency and authenticity via CrossMark

Cite this article

Brander, D., Gravesen, J. Monge surfaces and planar geodesic foliations. J. Geom. 109, 4 (2018).

Download citation


  • Monge surface
  • planar geodesic
  • developable surface

Mathematics Subject Classification

  • Primary 53A05
  • Secondary 53C12
  • 53C22