Skip to main content
Log in

Counting arcs in projective planes via Glynn’s algorithm

Journal of Geometry Aims and scope Submit manuscript

Cite this article

Abstract

An n-arc in a projective plane is a collection of n distinct points in the plane, no three of which lie on a line. Formulas counting the number of n-arcs in any finite projective plane of order q are known for \(n \le 8\). In 1995, Iampolskaia, Skorobogatov, and Sorokin counted 9-arcs in the projective plane over a finite field of order q and showed that this count is a quasipolynomial function of q. We present a formula for the number of 9-arcs in any projective plane of order q, even those that are non-Desarguesian, deriving Iampolskaia, Skorobogatov, and Sorokin’s formula as a special case. We obtain our formula from a new implementation of an algorithm due to Glynn; we give details of our implementation and discuss its consequences for larger arcs.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Institutional subscriptions

Similar content being viewed by others

References

  1. Batten, L.M.: Combinatorics of Finite Geometries, 2nd edn. Cambridge University Press, Cambridge (1997)

    Book  MATH  Google Scholar 

  2. Batten, L.M., Beutelspacher, A.: The Theory of Finite Linear Spaces: Combinatorics of Points and Lines. Cambridge University Press, Cambridge (2009)

    MATH  Google Scholar 

  3. Betten, A., Betten, D.: Linear spaces with at most 12 points. J. Comb. Des. 7, 119–145 (1999)

    Article  MATH  MathSciNet  Google Scholar 

  4. Elkies, N.D.: The moduli spaces of the ten \(10_3\)-configurations. Preprint (2016)

  5. Gleason, A.: Finite Fano planes. Am. J. Math. 78(4), 797–807 (1956)

    Article  MATH  MathSciNet  Google Scholar 

  6. Glynn, D.: Rings of geometries. II. J. Combin. Theory Ser. A 49(1), 26–66 (1988)

    Article  MATH  MathSciNet  Google Scholar 

  7. Grünbaum, B.: Configurations of Points and Lines. Graduate Studies in Mathematics, 103. American Mathematical Society, Providence (2009)

    Google Scholar 

  8. Hirschfeld, J.W.P., Thas, J.A.: Open problems in finite projective spaces. Finite Fields Appl. 32, 44–81 (2015)

    Article  MATH  MathSciNet  Google Scholar 

  9. Iampolskaia, A., Skorobogatov, A.N., Sorokin, E.: Formula for the number of [9,3] MDS codes. IEEE Trans. Inf. Theory 41(6), 1667–1671 (1995)

    Article  MATH  MathSciNet  Google Scholar 

  10. Kaplan, N., Kimport, S., Lawrence, R., Peilen, L., Weinreich, M.: The number of \(10\)-arcs in the projective plane is not quasipolynomial (in preparation) (2017)

  11. Lawrence, R., Weinreich, M.: Counting 10-arcs in the projective plane over a finite field. http://rachellawrence.github.io/TenArcs/

  12. McKay, B.D., Piperno, A.: Practical graph isomorphism, II. J. Symb. Comput. 60, 94–112 (2013)

    Article  MATH  MathSciNet  Google Scholar 

  13. Rolland, R., Skorobogatov, A.N.: Dénombrement des configurations dans le plan projectif, In: Proceedings of Arithmetic, Geometry, and Coding Theory (Luminy 1993), 199–207, de Gruyter, Berlin (1996)

  14. Sturmfels, B.: Computational algebraic geometry of projective configurations. J. Symb. Comput. 11, 595–618 (1991)

    Article  MATH  Google Scholar 

  15. Tait, M.: On a problem of Neumann. arXiv:1509.06587 (2015), p. 4.

  16. The On-Line Encyclopedia of Integer Sequences, published electronically at https://oeis.org, 2016, Sequence A001200

  17. Weibel, C.: Survey of non-Desarguesian planes. Not. Am. Math. Soc. 54(10), 1294–1303 (2007)

    MATH  Google Scholar 

Download references

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Nathan Kaplan.

Rights and permissions

Reprints and Permissions

About this article

Check for updates. Verify currency and authenticity via CrossMark

Cite this article

Kaplan, N., Kimport, S., Lawrence, R. et al. Counting arcs in projective planes via Glynn’s algorithm. J. Geom. 108, 1013–1029 (2017). https://doi.org/10.1007/s00022-017-0391-1

Download citation

  • Received:

  • Revised:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1007/s00022-017-0391-1

Mathematics Subject Classification

Keywords

Navigation