Skip to main content
Log in

On the arithmetic 4-orbifolds associated to integral quaternary quadratic forms of index 2

  • Published:
Journal of Geometry Aims and scope Submit manuscript

Abstract

Groups acting properly and discontinuously on the Cartesian product \(\mathbb {H}^{2}\times \mathbb {H}^{2}\) of two hyperbolic planes are termed hyperabelian by Picard. The automorphism group \(\mathrm {Aut}f\) of a quaternary integral quadratic form f of index 2 is an example of a hyperabelian group. Hence the quotient orbifold \(Q_{f}\) of the action of \(\mathrm {Aut}f\) on \(\mathbb {H}^{2}\times \mathbb {H}^{2}\) is a 4-dimensional arithmetic orbifold, endowed with a natural \(\mathbb {H}^{2}\times \mathbb {H}^{2}\)-geometry. Plücker coordinates are used to understand \(Q_{f}\). A real automorphism U of \(\mathbb {R}^{4}\) induces a real automorphism \(\mathbf {K(}U)\) of \((\mathbb {R}^{6},k)\) in such a way that if \(U\in SL(4,\mathbb {Z})\) then \(\mathbf {K(}U)\in SL(6,\mathbb {Z})\) is an automorph of the Klein quadratic form k. It is proved that the converse is true. That is, given an automorph \(M\in SL(6,\mathbb {Z})\) of k there is \(U\in SL(4,\mathbb {Z})\) such that \(\mathbf {K(}U)=\pm M\), so that the proper automorphism group of the Klein quadric is isomorphic to \(SL(4,\mathbb {Z})\) via \(\mathbf {K}\). This is used to obtain the automorphism group of the quadratic line complex of line tangents to a quadric in projective space \(P^{3}\). With this, a description is given of the automorphism group of a quaternary integral quadratic form of index 2.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Similar content being viewed by others

References

  1. Bourget, H.: Sur une classe particulière de groups hyperabéliens. Ann. Fac. Sci. Toulouse 1(12), 1–48 (1898)

    Article  MATH  Google Scholar 

  2. Cassels, J.W.S.: Rational Quadratic Forms. Academic Press, London (1978)

    MATH  Google Scholar 

  3. Conway, J.H.: Assisted by Francis Y. C. Fung, The Sensual (quadratic) Form, Carus Math. Monographs No. 26 MAA, Washington, (1977)

  4. Conway, J.H., Sloane, N.J.A.: On the Classification of Integral Quadratic Forms, in Sphere Packings, Lattices and Groups, 3rd edn. Springer, New York (1998)

    Google Scholar 

  5. Cotty, G.: Les fonctions abéliennes et la théorie des nombres. Ann. Fac. Sci. Toulouse 3(3), 209–376 (1911)

    Article  MATH  MathSciNet  Google Scholar 

  6. Cotty, G.: Sur quelques propiétés arithmétiques de l’espace reglée. Nouv. Ann. 4(13), 206–241 (1913)

    Google Scholar 

  7. Charve, L.: De la réduction des formes quadratiques ternaires positives et de son application aux irrationnelles du troisième degrée. Ann. Sci. de l’ENS(2) 9, 3–156 (1880)

    MATH  MathSciNet  Google Scholar 

  8. Dickson, L.E.: Modern Elementary Theory of Numbers. The University of Chicago Press, Chicago (1939)

    MATH  Google Scholar 

  9. Gantmacher, F.R.: The Theory of Matrices I. Chelsea, New York (1977)

    MATH  Google Scholar 

  10. Giraud, G.: Sur les groupes des transformations G. Giraud, Sur les groupes des transformations semblables arithmétiques de certaines formes quaternaires indéfinies et sur les fonctions hyperabeliènnes correspondants. Ann. Sci. de l’ENS (3) 33, 303–329 (1916)

    MATH  Google Scholar 

  11. Got, Th.: Questions diverses concernant certaines formes quadratiques ternaires indéfinies et les groupes fuchsiennes arithmétiques qui s’y rattachent. Thèses francaises de l’entre-deux-guerres, (1913)

  12. Jones, B.W.: The arithmetic theory of quadratic forms. Carus Math. Monographs No. 10 MAA, Baltimore, (1950)

  13. Montesinos-Amilibia, J.M.: On integral quadratic forms having commensurable groups of automorphisms. Hiroshima Math. J. 43, 371–411 (2013)

    MATH  MathSciNet  Google Scholar 

  14. Montesinos-Amilibia, J.M.: Addendum to “On integral quadratic forms having commensurable groups of automorphisms”. Hiroshima Math. J. 44, 341–350 (2014)

    MATH  MathSciNet  Google Scholar 

  15. Montesinos-Amilibia, J.M.: On odd rank integral quadratic forms: canonical represantives of projective classes and explicit constructions of integral classes with square-free determinant. RACSAM 109, 199–245 (2015). Erratum RACSAM 109, 759-760 (2015).

    Article  MATH  Google Scholar 

  16. Mordell, L.J.: The arithmetically reduced indefinite quadratic forms in n-variables. Proc. R. Soc. Lond. A 131, 99–108 (1931)

    Article  MATH  Google Scholar 

  17. Newman, M.: Integral Matrices. Academic Press, New York (1972)

    MATH  Google Scholar 

  18. Picard, E.: Sur les fonctions hyperabeliènnes. J. des mathématiques pures et apliquées 4(1), 87–128 (1885)

    MATH  Google Scholar 

  19. Pottmann, H., Wallner, J.: Computational Linear Geometry. Springer, New York (2010)

    Book  MATH  Google Scholar 

  20. Sauer, R.: Projektive Liniengeometrie. Walter de Gruyter & Co, Berlin (1937)

    MATH  Google Scholar 

  21. Siegel, C.L.: Einheiten quadratischen Formen. Abh. Math. Semin. Hans. Univ. 13, 209–239 (1939)

    Article  MATH  Google Scholar 

  22. Siegel, C.L.: Lectures on Quadratic Forms. Tata Institute of Fundamental Research, (1957)

  23. Steenrod, N.: The Topology of Fiber Bundles, Math. Series 14. Princeton University Press, Princeton (1951)

  24. Tretkoff, P.: Complex Ball Quotients and Line Arrangements in the Projective plane. Princeton University Press, Princeton (2016)

    Book  MATH  Google Scholar 

  25. Vignéras, M.F.: Quaternions, LNM 800. Springer, New York (1980)

    Google Scholar 

  26. Wall, C.T.C.: On the orthogonal groups of unimodular quadratic forms II. J. Reine und Angew. Math. 213, 122–136 (1962)

    MATH  MathSciNet  Google Scholar 

  27. Zindler, K.: Algebraische liniengeometrie. In: Meyer, Mohrmann (eds.) Encyklopädie der Mathematische Wissenschaften, Geometrie, pp. 1921–1928. Teubner, Leipzig

Download references

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to José María Montesinos-Amilibia.

Additional information

Supported by MEC-MTM 2012-30719.

Rights and permissions

Reprints and permissions

About this article

Check for updates. Verify currency and authenticity via CrossMark

Cite this article

Montesinos-Amilibia, J.M. On the arithmetic 4-orbifolds associated to integral quaternary quadratic forms of index 2. J. Geom. 108, 961–984 (2017). https://doi.org/10.1007/s00022-017-0389-8

Download citation

  • Received:

  • Revised:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1007/s00022-017-0389-8

Mathematics Subject Classification

Keywords

Navigation