Springer Nature is making SARS-CoV-2 and COVID-19 research free. View research | View latest news | Sign up for updates

On dual hyperovals of rank 4 over \({{\mathbb{F}}_2}\)

  • 74 Accesses

Abstract

We discuss dual hyperovals of rank 4 over \({{\mathbb{F}}_2}\). In particular, we classify all such dual hyperovals if the ambient space has dimension 7 or 8. We also determine the bilinear dual hyperovals in the case of an ambient space of dimension 9 or 10. A classification of all dual hyperovals in dimension 9 seems possible in the near future.

This is a preview of subscription content, log in to check access.

References

  1. 1.

    Betten, A.: Rainbow cliques and the classification of small BLT-sets. In: ISSAC 2013—Proceedings of the 38th International Symposium on Symbolic and Algebraic Computation, pp. 53–60. ACM, New York (2013)

  2. 2.

    Bosma, W., Cannon, J., Playoust, C.: The Magma algebra system. I. The user language. J. Symb. Comput. 24(3–4), 235–265 (1997). [Computational algebra and number theory (London, 1993)]

  3. 3.

    Cherowitzo W.E.: Hyperovals in the translation planes of order 16. J. Comb. Math. Comb. Comput. 9, 39–55 (1991)

  4. 4.

    Cooperstein B.N., Thas J.A.: On generalized k-arcs in \({\mathbb{PG}(2n,q)}\) . Ann. Comb. 5(2), 141–152 (2001)

  5. 5.

    Del Fra A.: On d-dimensional dual hyperovals. Geom. Dedic. 79(2), 157–178 (2000)

  6. 6.

    Dempwolff, U.: The nonsolvable doubly transitive dimensional dual hyperovals. Adv. Geom. (Submitted)

  7. 7.

    Dempwolff, U.: The automorphism groups of doubly transitive bilinear dual hyperovals. To appear in Adv. Geom

  8. 8.

    Dempwolff U.: Semifield planes of order 81. J. Geom. 89(1–2), 1–16 (2008)

  9. 9.

    Dempwolff U.: Symmetric extensions of bilinear dual hyperovals. Finite Fields Appl. 22, 51–56 (2013)

  10. 10.

    Dempwolff U.: Symmetric doubly dual hyperovals have an odd dimension. Des. Codes Cryptogr. 74, 153–157 (2015)

  11. 11.

    Dempwolff U.: Universal covers of dimensional dual hyperovals. Discret. Math. 338(4), 633–636 (2015)

  12. 12.

    Dempwolff U., Edel Y.: Dimensional dual hyperovals and apn functionswith translation groups. J. Algebraic Comb. 39(2), 137–153 (2014)

  13. 13.

    Dempwolff U., Kantor W.: Orthogonal dual hyperovals, symplectic spreads and orthogonal spreads. J. Algebraic Comb. 41(2), 83–108 (2015)

  14. 14.

    Dempwolff U., Reifart A.: The classification of the translation planes of order 16. I. Geom. Dedic. 15(2), 137–153 (1983)

  15. 15.

    Knuth, D.E.: Dancing links. In: Davies, J., Roscoe, B., Woodcock, J.: Millennial Perspectives in Computer Science: Proceedings of the 1999 Oxford-Microsoft Symposium in Honour of Sir Tony Hoare, Palgrave, pp. 187–214 (2000). arXiv:cs/0011047

  16. 16.

    Penttila, T.: Applications of computer algebra to finite geometry. In: Finite Geometries, Groups, and Computation, pp. 203–221. Walter de Gruyter GmbH & Co. KG, Berlin (2006)

  17. 17.

    Royle, G.: Projective Planes Of Order 16. http://school.maths.uwa.edu.au/~gordon/remote/planes16/. Accessed 28 May 2013

  18. 18.

    Taniguchi H., Yoshiara S.: On dimensional dual hyperovals \({S^{d+1}_{\sigma,\phi}}\) . Innov. Incid. Geom. 1, 197–219 (2005)

  19. 19.

    Taniguchi H., Yoshiara S.: New quotients of the d-dimensional Veronesean dual hyperoval in \({{{\rm PG}}(2d+1,2)}\) . Innov. Incid. Geom. 12, 15 (2011)

  20. 20.

    Yoshiara S.: A family of d-dimensional dual hyperovals in \({{{\rm PG}}(2d+1,2)}\) . Eur. J. Comb. 20(6), 589–603 (1999)

  21. 21.

    Yoshiara S.: Ambient spaces of dimensional dual arcs. J. Algebraic Comb. 19(1), 5–23 (2004)

  22. 22.

    Yoshiara, S.: Dimensional dual arcs—a survey. In: Finite Geometries, Groups, and Computation, pp. 247–266. Walter de Gruyter GmbH & Co. KG, Berlin (2006)

Download references

Author information

Correspondence to Anton Betten.

Rights and permissions

Reprints and Permissions

About this article

Verify currency and authenticity via CrossMark

Cite this article

Betten, A., Dempwolff, U. & Wassermann, A. On dual hyperovals of rank 4 over \({{\mathbb{F}}_2}\) . J. Geom. 108, 75–98 (2017). https://doi.org/10.1007/s00022-016-0326-2

Download citation

Mathematics Subject Classification

  • 51E21

Keywords

  • Dual hyperoval
  • enumeration
  • finite projective geometry