Skip to main content
Log in

General position subsets and independent hyperplanes in d-space

  • Published:
Journal of Geometry Aims and scope Submit manuscript

Abstract

Erdős asked what is the maximum number \({\alpha(n)}\) such that every set of \({n}\) points in the plane with no four on a line contains \({\alpha(n)}\) points in general position. We consider variants of this question for \({d}\)-dimensional point sets and generalize previously known bounds. In particular, we prove the following two results for fixed \({d}\):

  • Every set \({\mathcal{H}}\) of \({n}\) hyperplanes in \({\mathbb{R}^d}\) contains a subset \({S\subseteq \mathcal{H}}\) of size at least \({c \left(n \log n\right)^{1/d}}\), for some constant \({c=c(d)> 0}\), such that no cell of the arrangement of \({\mathcal{H}}\) is bounded by hyperplanes of \({S}\) only.

  • Every set of \({cq^d\log q}\) points in \({\mathbb{R}^d}\), for some constant \({c=c(d)> 0}\), contains a subset of \({q}\) cohyperplanar points or \({q}\) points in general position.

Two-dimensional versions of the above results were respectively proved by Ackerman et al. [Electronic J. Combinatorics, 2014] and by Payne and Wood [SIAM J. Discrete Math., 2013].

This is a preview of subscription content, log in via an institution to check access.

Access this article

Subscribe and save

Springer+ Basic
$34.99 /Month
  • Get 10 units per month
  • Download Article/Chapter or eBook
  • 1 Unit = 1 Article or 1 Chapter
  • Cancel anytime
Subscribe now

Buy Now

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Similar content being viewed by others

References

  1. Ackerman, E., Pach, J., Pinchasi, R., Radoičić, R., Tóth, G.: A note on coloring line arrangements. Electron. J. Comb. 21(2), #P2.23 (2014)

  2. Bose P., Cardinal J., Collette S., Hurtado F., Korman M., Langerman S., Taslakian P.: Coloring and guarding arrangements. Discret. Math. Theor. Comput. Sci. 15(3), 139–154 (2013)

    MathSciNet  MATH  Google Scholar 

  3. Cardinal, J., Felsner, S.: Covering partial cubes with zones. In: Proceedings of the 16th Japan conference on discrete and computational geometry and graphs (JCDCG\({^2}\) 2013), Lecture notes in computer science. Springer, Berlin (2014)

  4. Elekes, G., Tóth, C.D.: Incidences of not-too-degenerate hyperplanes. In: Proceedings of the ACM symposium on computational geometry (SoCG), pp. 16–21 (2005)

  5. Erdős P.: On some metric and combinatorial geometric problems. Discret. Math. 60, 147–153 (1986)

    Article  MathSciNet  MATH  Google Scholar 

  6. Füredi Z.: Maximal independent subsets in Steiner systems and in planar sets. SIAM J. Discret. Math. 4(2), 196–199 (1991)

    Article  MathSciNet  MATH  Google Scholar 

  7. Furstenberg H., Katznelson Y.: A density version of the Hales–Jewett theorem for \({k=3}\). Discret. Math. 75(1-3), 227–241 (1989)

    Article  MathSciNet  MATH  Google Scholar 

  8. Furstenberg H., Katznelson Y.: A density version of the Hales–Jewett theorem. J. d’analyse Math. 57, 64–119 (1991)

    Article  MathSciNet  MATH  Google Scholar 

  9. Gowers, T.: A geometric Ramsey problem. http://mathoverflow.net/questions/50928/a-geometric-ramsey-problem (2012)

  10. Halperin D.: Arrangements. In: Goodman, J.E., O’Rourke, J. (eds) Handbook of Discrete and Computational Geometry, chapter 24., 2nd edn., CRC Press, Boca Raton (2004)

    Google Scholar 

  11. Kostochka A.V., Mubayi D., Verstraëte J.: On independent sets in hypergraphs. Random Struct. Algorithms 44(2), 224–239 (2014)

    Article  MathSciNet  MATH  Google Scholar 

  12. Milićević, L.: Sets in almost general position (2015). arXiv:1601.07206

  13. Payne M.S., Wood D.R.: On the general position subset selection problem. SIAM J. Discret. Math. 27(4), 1727–1733 (2013)

    Article  MathSciNet  MATH  Google Scholar 

  14. Polymath D.H.J.: A new proof of the density Hales–Jewett theorem. Ann. Math. 175(2), 1283–1327 (2012)

    MathSciNet  MATH  Google Scholar 

  15. Solymosi J., Stojaković M.: Many collinear \({k}\)-tuples with no \({k+1}\) collinear points. Discret. Comput. Geom. 50, 811–820 (2013)

    Article  MathSciNet  MATH  Google Scholar 

  16. Spencer J.: Turán’s theorem for \({k}\)-graphs. Discret. Math. 2(2), 183–186 (1972)

    Article  MATH  Google Scholar 

  17. Szemerédi E., Trotter W.T.: Extremal problems in discrete geometry. Combinatorica 3(3), 381–392 (1983)

    Article  MathSciNet  MATH  Google Scholar 

Download references

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Jean Cardinal.

Additional information

Research of Wood is supported by the Australian Research Council.

Rights and permissions

Reprints and permissions

About this article

Check for updates. Verify currency and authenticity via CrossMark

Cite this article

Cardinal, J., Tóth, C.D. & Wood, D.R. General position subsets and independent hyperplanes in d-space. J. Geom. 108, 33–43 (2017). https://doi.org/10.1007/s00022-016-0323-5

Download citation

  • Received:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1007/s00022-016-0323-5

Mathematics Subject Classification

Navigation