Advertisement

Journal of Geometry

, Volume 105, Issue 2, pp 391–417 | Cite as

The configurations 123 revisited

  • Abdullah Al-Azemi
  • Dieter Betten
Article
  • 94 Downloads

Abstract

As is known, there are 229 symmetric configurations 123, (Daublebsky von Sterneck in Monatshefte Math Phys 5:223–255, 1895; Gropp in J Comb Inf Syst Sci 15:34–48, 1990). We use tactical decompositions by automorphism group (TDA) to study these configurations in detail. In (Daublebsky von Sterneck in Monatshefte Math Phys 14, 254–260, 1903) the automorphism groups of the configurations were determined. We find some errors there and correct them. For the configurations with a rather big automorphism group, we give models which display the structure of the group.

Mathematics Subject Classification (2010)

05E18 05XX 

Keywords

Configurations tactical decompositions linear spaces 

Preview

Unable to display preview. Download preview PDF.

Unable to display preview. Download preview PDF.

References

  1. 1.
    Betten A., Betten D.: Regular linear spaces. Beitr. Algebra Geom. 38, 111–124 (1997)zbMATHMathSciNetGoogle Scholar
  2. 2.
    Betten A., Betten D.: Tactical decompositions and some configurations v 4. J. Geom. 66, 27–41 (1999)CrossRefzbMATHMathSciNetGoogle Scholar
  3. 3.
    Betten A., Brinkmann G., Pisanski T.: Counting symmetric configurations v 3. Discrete Appl. Math. 99, 331–338 (2000)CrossRefzbMATHMathSciNetGoogle Scholar
  4. 4.
    Daublebskyvon Sterneck R.: Die Configurationen 123. Monatshefte Math. Phys. 5, 223–255 (1895)CrossRefMathSciNetGoogle Scholar
  5. 5.
    Daublebsky von Sterneck, R.: Über die zu den Configurationen 123 zugehörigen Gruppen von Substitutionen. Monatshefte Math. Phys. 14, 254–260 (1903)Google Scholar
  6. 6.
    Gropp H.: On the existence and nonexistence of configurations n k. J. Comb. Inf. Syst. Sci. 15, 34–48 (1990)zbMATHMathSciNetGoogle Scholar
  7. 7.
    Grünbaum, B.: Configurations of Points and Lines. Graduate Studies in Mathematics, vol. 103. AMS Providence, Rhode Island (2009)Google Scholar

Copyright information

© Springer Basel 2014

Authors and Affiliations

  • Abdullah Al-Azemi
    • 1
  • Dieter Betten
    • 2
  1. 1.Department of Mathematics, Faculty of ScienceKuwait UniversitySafatKuwait
  2. 2.Math. Seminar Univ. KielKielGermany

Personalised recommendations