Skip to main content
Log in

Notes on Schneider’s stability estimates for convex sets

  • Published:
Journal of Geometry Aims and scope Submit manuscript

Abstract

In 2009 Schneider obtained stability estimates in terms of the Banach–Mazur distance for several geometric inequalities for convex bodies in an n-dimensional normed space \({\mathbb{E}^n}\). A unique feature of his approach is to express fundamental geometric quantities in terms of a single function \({\rho:\mathfrak{B} \times \mathfrak{B} \to \mathbb{R}}\) defined on the family of all convex bodies \({\mathfrak{B}}\) in \({\mathbb{E}^n}\). In this paper we show that (the logarithm of) the symmetrized ρ gives rise to a pseudo-metric d D on \({\mathfrak{B}}\) inducing, from our point of view, a finer topology than Banach–Mazur’s d BM . Further, d D induces a metric on the quotient \({\mathfrak{B}/{\rm Dil}^+}\) of \({\mathfrak{B}}\) by the relation of positive dilatation (homothety). Unlike its compact Banach–Mazur counterpart, d D is only “boundedly compact,” in particular, complete and locally compact. The general linear group \({{\rm GL}(\mathbb{E}^n)}\) acts on \({\mathfrak{B}/{\rm Dil}^+}\) by isometries with respect to d D , and the orbit space is naturally identified with the Banach–Mazur compactum \({\mathfrak{B}/{\rm Aff}}\) via the natural projection \({\pi:\mathfrak{B}/{\rm Dil}^+\to\mathfrak{B}/{\rm Aff}}\), where Aff is the affine group of \({\mathbb{E}^n}\). The metric d D has the advantage that many geometric quantities are explicitly computable. We show that d D provides a simpler and more fitting environment for the study of stability; in particular, all the estimates of Schneider turn out to be valid with d BM replaced by d D .

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Similar content being viewed by others

References

  1. Bohnenblust F.: Convex regions and projections in Minkowski spaces. Ann. Math. 39, 301–308 (1938)

    Article  MathSciNet  Google Scholar 

  2. Bonnesen, T., Fenchel, W.: Theorie der konvexen Körper. Ergebn. Math., Bd., vol. 3. Springer, Berlin (1934); English translation: Theory of Convex Bodies. BCS, Moscow, ID (1987)

  3. Böröczky, K., jr.: Around the Rogers–Shephard inequality. Math. Pannonica. 7, 113–130 (1996)

    Google Scholar 

  4. Böröczky, K., jr.: The stability of the Rogers-Shephard inequality and of some related inequalities. Adv. Math. 190, 47–76 (2005)

    Google Scholar 

  5. Eggleston H.G.: Sets of constant width in finite dimensional Banach spaces. Israel J. Math. 3, 163–172 (1965)

    Article  MathSciNet  MATH  Google Scholar 

  6. Gluskin E.: Norms of random matrices and diameters of finite dimensional sets. Mat. Sb. 120, 180–189 (1983)

    MathSciNet  Google Scholar 

  7. Guo Q.: Stability of the Minkowski measure of asymmetry for convex bodies. Discrete Comput. Geom. 34, 351–362 (2005)

    Article  MathSciNet  MATH  Google Scholar 

  8. Guo, Q., Kaijser, S.: Approximation of convex bodies by convex bodies. Northeast Math. J. 19(4), 323–332 (2003)

    Google Scholar 

  9. John, F.: Extremum problems with inequalities as subsidiary conditions. In: Courant Anniversary Volume, pp. 187–204. Interscience, New York (1948)

  10. Grünbaum, B.: Measures of symmetry for convex sets. In: Proceedings of Symposia in Pure Mathematics, vol. VII. pp. 233–270. American Mathematical Society, Providence (1963)

  11. Jung, H.W.E.: \"Uber die kleinste Kugel, die eine räumliche Figur einschliesst. J. Reine Angew. Math. 123, 241–257 (1901); ebenda 137, 310–313 (1910)

    Google Scholar 

  12. Klee, V.L.: The critical set of a convex body. Am. J. Math. 75(1), 178–188 (1953)

    Google Scholar 

  13. Lassak M.: Approximation of convex bodies by centrally symmetric convex bodies. Geom. Dedicata. 72, 63–68 (1998)

    Article  MathSciNet  MATH  Google Scholar 

  14. Leichtweiss K.: Zwei Extremalprobleme der Minkowski-Geometrie. Math. Z. 62, 37–49 (1955)

    Article  MathSciNet  MATH  Google Scholar 

  15. Rudelson, M.: Distance between non-symmetric convex bodies and the MM*-estimate. Positive. 4(2), 161–178 (2000)

    Google Scholar 

  16. Schneider, R.: Convex Bodies: the Brunn–Minkowski Theory. Cambridge University Press, Cambridge (1993)

  17. Schneider R.: Stability for some extremal properties of the simplex. J. Geom. 96, 135–148 (2009)

    Article  MathSciNet  Google Scholar 

  18. Steinhagen, P.: \"Uber die größte Kugel in einer konvexen Punktmenge. Abh. math. Seminar Hamburg Univ. 1, 15–26 (1922)

  19. Tomczak-Jaegermann, N.: Banach–Mazur distances and finite dimensional operator ideals. In: Pitman Monographs and Surveys in Pure and Applied Mathematics, vol. 38. Longman, New York (1989)

  20. Toth G.: Simplicial intersections of a convex set and moduli for spherical minimal immersions. Michigan Math. J. 52, 341–359 (2004)

    Article  MathSciNet  MATH  Google Scholar 

  21. Toth, G.: On the shape of the moduli of spherical minimal immersions. Trans. Am. Math. Soc. 358(6), 2425–2446 (2006)

    Google Scholar 

  22. Toth G.: Convex sets with large distortion. J. Geom. 92, 174–192 (2009)

    Article  MathSciNet  MATH  Google Scholar 

  23. Yaglom, M., Boltyanskiĭ, V.G.: Convex figures. In: GITTL, Moscow (1951); English transl., Holt, Rinehart and Winston, New York (1961); German transl., VEB Deutscher Verlag der Wissenschaften, Berlin (1956)

Download references

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Gabor Toth.

Additional information

The author wishes to thank the referee for pointing out numerous improvements to the original manuscript.

Rights and permissions

Reprints and permissions

About this article

Cite this article

Toth, G. Notes on Schneider’s stability estimates for convex sets. J. Geom. 104, 585–598 (2013). https://doi.org/10.1007/s00022-013-0179-x

Download citation

  • Received:

  • Revised:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1007/s00022-013-0179-x

Mathematics Subject Classification (2010)

Keywords

Navigation