Skip to main content
Log in

New upper bounds on the smallest size of a complete arc in a finite Desarguesian projective plane

Journal of Geometry Aims and scope Submit manuscript

Cite this article

Abstract

In the projective planes PG(2, q), more than 1230 new small complete arcs are obtained for \({q \leq 13627}\) and \({q \in G}\) where G is a set of 38 values in the range 13687,..., 45893; also, \({2^{18} \in G}\). This implies new upper bounds on the smallest size t 2(2, q) of a complete arc in PG(2, q). From the new bounds it follows that

$$t_{2}(2, q) < 4.5\sqrt{q} \, {\rm for} \, q \leq 2647$$

and q = 2659,2663,2683,2693,2753,2801. Also,

$$t_{2}(2, q) < 4.8\sqrt{q} \, {\rm for} \, q \leq 5419$$

and q = 5441,5443,5449,5471,5477,5479,5483,5501,5521. Moreover,

$$t_{2}(2, q) < 5\sqrt{q} \, {\rm for} \, q \leq 9497$$

and q = 9539,9587,9613,9623,9649,9689,9923,9973. Finally,

$$t_{2}(2, q) <5 .15\sqrt{q} \, {\rm for} \, q \leq 13627$$

and q = 13687,13697,13711,14009. Using the new arcs it is shown that

$$t_{2}(2, q) < \sqrt{q}\ln^{0.73}q {\rm for} 109 \leq q \leq 13627\, {\rm and}\, q \in G.$$

Also, as q grows, the positive difference \({\sqrt{q}\ln^{0.73} q-\overline{t}_{2}(2, q)}\) has a tendency to increase whereas the ratio \({\overline{t}_{2}(2, q)/(\sqrt{q}\ln^{0.73} q)}\) tends to decrease. Here \({\overline{t}_{2}(2, q)}\) is the smallest known size of a complete arc in PG(2,q). These properties allow us to conjecture that the estimate \({t_{2}(2,q) < \sqrt{q}\ln ^{0.73}q}\) holds for all \({q \geq 109.}\) The new upper bounds are obtained by finding new small complete arcs in PG(2,q) with the help of a computer search using randomized greedy algorithms. Finally, new forms of the upper bound on t 2(2,q) are proposed.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Institutional subscriptions

References

  • Abatangelo, V.: A class of complete [(q + 8)/3]-arcs of PG(2,q), with q = 2h and \({h (\geq 6)}\) even Ars Combinatoria. 16, 103–111 (1983)

  • Ball S.: On small complete arcs in a finite plane. Discrete Math. 74, 29–34 (1997)

    Article  Google Scholar 

  • Bartoli D., Davydov A.A., Faina G., Marcugini S., Pambianco F.: On sizes of complete arcs in PG(2, q). Discrete Math. 312, 680–698 (2012)

    Article  MathSciNet  MATH  Google Scholar 

  • Bartoli, D., Davydov, A.A., Faina, G., Marcugini, S., Pambianco, F.: New upper bounds on the smallest size of a complete arc in the plane PG(2, q). In: Proc. XIII International Workshop on Algebraic and Combinational Coding Theory, ACCT2012, Pomorie, Bulgaria, pp. 60–66 (2012). http://www.moi.math.bas.bg/moiuser/~ACCT2012/b10.pdf

  • Bartoli, D., Davydov, A.A., Marcugini, S., Pambianco, F.: New type of estimate for the smallest size of complete arcs in PG(2, q). In: Proceedings of the XIII International Workshop on Algebraic and Combinational Coding Theory, ACCT2012, Pomorie, Bulgaria, pp. 67–72 (2012). http://www.moi.math.bas.bg/moiuser/~ACCT2012/b11.pdf

  • Bartoli D., Davydov A.A., Marcugini S., Pambianco F.: The minimum order of complete caps in PG(4,4). Adv. Math. Commun. 5, 37–40 (2011)

    Article  MathSciNet  MATH  Google Scholar 

  • Bierbrauer, J., Bartoli, D., Faina, G., Marcugini, S., Pambianco, F., Edel, Y.: The structure of quaternary quantum caps. Des. Codes Cryptogr. doi:10.1007/s10623-013-9796-5

  • Davydov A.A., Faina G., Marcugini S., Pambianco F.: Computer search in projective planes for the sizes of complete arcs. J. Geom. 82, 50–62 (2005)

    Article  MathSciNet  MATH  Google Scholar 

  • Davydov A.A., Faina G., Marcugini S., Pambianco F.: On sizes of complete caps in projective spaces PG(n,q) and arcs in planes PG(2, q). J. Geom. 94, 31–58 (2009)

    Article  MathSciNet  MATH  Google Scholar 

  • Davydov A.A., Giulietti M., Marcugini S., Pambianco F.: On sharply transitive sets in PG(2, q). Innov. Incid. Geom. 6(−7), 139–151 (2009)

    MathSciNet  Google Scholar 

  • Davydov A.A., Giulietti M., Marcugini S., Pambianco F.: New inductive constructions of complete caps in PG(N,q), q even. J. Comb. Des. 18, 176–201 (2010)

    MathSciNet  Google Scholar 

  • Davydov A.A., Giulietti M., Marcugini S., Pambianco F.: Linear nonbinary covering codes and saturating sets in projective spaces. Adv. Math. Commun. 5, 119–147 (2011)

    Article  MathSciNet  MATH  Google Scholar 

  • Davydov A.A., Marcugini S., Pambianco F.: Complete caps in projective spaces PG(n,q). J. Geom. 80, 23–30 (2004)

    Article  MathSciNet  MATH  Google Scholar 

  • Faina G., Giulietti M.: On small dense arcs in Galois planes of square order. Discrete Math. 267, 113–125 (2003)

    Article  MathSciNet  MATH  Google Scholar 

  • Faina G., Pambianco F.: On the spectrum of the values k for which a complete k-cap in PG(n,q) exists. J. Geom. 62, 84–98 (1998)

    Article  MathSciNet  MATH  Google Scholar 

  • Faina G., Pambianco F.: On some 10-arcs for deriving the minimum order for complete arcs in small projective planes. Discrete Math. 208(209), 261–271 (1999)

    Article  MathSciNet  Google Scholar 

  • Gács A., Szőnyi T.: Random constructions and density results. Des. Codes Cryptogr. 47, 267–287 (2008)

    Article  MathSciNet  Google Scholar 

  • Giulietti M.: Small complete caps in PG(2, q) for q an odd square. J. Geom. 69, 110–116 (2000)

    Article  MathSciNet  MATH  Google Scholar 

  • Giulietti M.: Small complete caps in Galois affine spaces. J. Algebraic. Combin. 25, 149–168 (2007)

    Article  MathSciNet  MATH  Google Scholar 

  • Giulietti M.: Small complete caps in PG(N,q), q even. J. Combin. Des. 15, 420–436 (2007)

    Article  MathSciNet  MATH  Google Scholar 

  • Giulietti, M., Korchmáros, G., Marcugini, S., Pambianco, F.: Transitive A 6-invariant k-arcs in PG(2, q). Des. Codes Cryptogr. doi:10.1007/s10623-012-9619-0 (to appear).

  • Giulietti, M., Ughi, E.: A small complete arc in PG(2, q), qp 2, p ≡ 3 (mod 4). Discrete Math. 208–209, 311–318 (1999)

  • Hadnagy E.: Small Complete Arcs in PG(2,p). Finite Fields Appl. 5, 1–12 (1999)

    Article  MathSciNet  MATH  Google Scholar 

  • Hartman A., Raskin L.: Problems and algorithms for covering arrays. Discrete Math. 284, 149–156 (2004)

    Article  MathSciNet  MATH  Google Scholar 

  • Hirschfeld, J.W.P.: Maximum sets in finite projective spaces. In: Lloyd, E.K. (ed.) Surveys in Combinatorics. Lecture Note Series, vol. 82, pp. 55–76. London Math. Soc., Cambridge University Press, Cambridge (1983)

  • Hirschfeld, J.W.P.: Projective geometries over finite fields, 2nd edn. Clarendon Press, Oxford (1998)

  • Hirschfeld J.W.P., Storme L.: The packing problem in statistics, coding theory and finite projective spaces. J. Stat. Planning Infer. 72, 355–380 (1998)

    Article  MathSciNet  MATH  Google Scholar 

  • Hirschfeld, J.W.P., Storme, L.: The packing problem in statistics, coding theory and finite geometry: update 2001. In: Blokhuis, A., Hirschfeld, J.W.P. et al. (eds.) Finite Geometries, Developments of Mathematics. Proceedings of the Fourth Isle of Thorns Conference, Chelwood Gate 2000, vol. 3, pp. 201–246. Kluwer Academic Publisher, Boston (2001)

  • Keri G.: Types of superregular matrices and the number of n-arcs and complete n-arcs in PG(r,q). J. Comb. Des. 14, 363–390 (2006)

    Article  MathSciNet  MATH  Google Scholar 

  • Kim J.H., Vu V.: Small complete arcs in projective planes. Combinatorica 23, 311–363 (2003)

    Article  MathSciNet  MATH  Google Scholar 

  • Korchmáros G.: New examples of complete k-arcs in PG(2, q). Europ. J. Combin. 4, 329–334 (1983)

    MATH  Google Scholar 

  • Lombardo-Radice L.: Sul problema dei k-archi completi di S 2,q . Boll. Un. Mat. Ital. 11, 178–181 (1956)

    MathSciNet  MATH  Google Scholar 

  • Lisonᄕk P., Marcugini S., Pambianco F.: Constructions of small complete arcs with prescribed symmetry. Contribut. Discrete Math. 3, 14–19 (2008)

    Google Scholar 

  • Marcugini, S., Milani, A., Pambianco, F.: Minimal complete arcs in PG(2, q), q ≤  29. J. Combin. Math. Combin. Comput. 47, 19–29 (2003)

  • Marcugini, S., Milani, A., Pambianco, F.: Minimal complete arcs in PG(2, q), q ≤  32. In: Proceedings of the XII International Workshop on Algebraic and Combinational Coding Theory, ACCT2010, Novosibirsk, Russia, pp. 217–222 (2010)

  • Östergård P.R.J.: Computer search for small complete caps. J. Geom. 69, 172–179 (2000)

    Google Scholar 

  • Pellegrino G.: Un’osservazione sul problema dei k-archi completi in S 2,q , con q ≡ 1 (mod 4). Atti Accad. Naz. Lincei Rend. 63, 33–44 (1977)

    MathSciNet  Google Scholar 

  • Pellegrino G.: Sugli archi completi dei piani PG(2, q), con q dispari, contenenti (q + 3)/2 punti di una conica. Rend. Mat. 12, 649–674 (1992)

    MathSciNet  MATH  Google Scholar 

  • Pellegrino, G.: Archi completi, contenenti (q + 1)/2 punti di una conica, nei piani di Galois di ordine dispari. Rend. Circ. Mat. Palermo (2) 62, 273–308 (1993)

  • Polverino O.: Small minimal blocking sets and complete k-arcs in PG(2,p3). Discrete Math. 208(−209), 469–476 (1999)

    Article  MathSciNet  Google Scholar 

  • Segre B.: Le geometrie di Galois. Ann. Mat. Pura Appl. 48, 1–97 (1959)

    Article  MathSciNet  MATH  Google Scholar 

  • Segre B.: Ovali e curve σ nei piani di Galois di caratteristica due. Atti Accad. Naz. Lincei Rend. 32, 785–790 (1962)

    MathSciNet  MATH  Google Scholar 

  • Segre B.: Introduction to Galois geometries. Atti Accad. Naz. Lincei Mem. 8, 133–236 (1967)

    MathSciNet  MATH  Google Scholar 

  • Szőnyi T.: Small complete arcs in Galois planes. Geom. Dedicata 18, 161–172 (1985)

    Article  MathSciNet  Google Scholar 

  • Szőnyi T.: Note on the order of magnitude of k for complete k-arcs in PG(2, q). Discrete Math. 66, 279–282 (1987)

    Article  MathSciNet  Google Scholar 

  • Szőnyi, T.: Complete arcs in Galois planes: Survey. Quaderni del Seminario di Geometrie Combinatorie, vol. 94. Università degli studi di Roma, La Sapienza (1989).

  • Szőnyi, T.: Arcs, caps, codes and 3-independent subsets. In: Faina, G., et al. (eds.) Giornate di Geometrie Combinatorie, Università degli studi di Perugia, pp. 57–80, Perugia (1993)

  • Szőnyi, T.: Some applications of algebraic curves in finite geometry and combinatorics. In: Bailey, R.A. (ed.) Surveys in Combinatorics, pp. 198–236. Cambridge University Press, Cambridge (1997)

  • Thas J.A.: M.D.S. codes and arcs in projective spaces: a survey. Le Matematiche (Catania) 47, 315–328 (1992)

    MathSciNet  MATH  Google Scholar 

  • Ughi, E.: The values \({\sqrt{2q}}\) and log 2 q: their relationship with k-arcs. Ars Combinatoria. 57, 201–207 (2000).

  • Ughi E.: Small almost complete arcs. Discrete Math. 255, 367–379 (2002)

    Article  MathSciNet  MATH  Google Scholar 

  • Voloch J.F.: On the completeness of certain plane arcs II. Eur. J. Combin. 11, 491–496 (1990)

    MathSciNet  MATH  Google Scholar 

Download references

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Giorgio Faina.

Rights and permissions

Reprints and Permissions

About this article

Cite this article

Bartoli, D., Davydov, A.A., Faina, G. et al. New upper bounds on the smallest size of a complete arc in a finite Desarguesian projective plane. J. Geom. 104, 11–43 (2013). https://doi.org/10.1007/s00022-013-0154-6

Download citation

  • Received:

  • Revised:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1007/s00022-013-0154-6

Mathematics Subject Classification (2010)

Keywords

Navigation