# New upper bounds on the smallest size of a complete arc in a finite Desarguesian projective plane

## Abstract

In the projective planes PG(2, q), more than 1230 new small complete arcs are obtained for $${q \leq 13627}$$ and $${q \in G}$$ where G is a set of 38 values in the range 13687,..., 45893; also, $${2^{18} \in G}$$. This implies new upper bounds on the smallest size t 2(2, q) of a complete arc in PG(2, q). From the new bounds it follows that

$$t_{2}(2, q) < 4.5\sqrt{q} \, {\rm for} \, q \leq 2647$$

and q = 2659,2663,2683,2693,2753,2801. Also,

$$t_{2}(2, q) < 4.8\sqrt{q} \, {\rm for} \, q \leq 5419$$

and q = 5441,5443,5449,5471,5477,5479,5483,5501,5521. Moreover,

$$t_{2}(2, q) < 5\sqrt{q} \, {\rm for} \, q \leq 9497$$

and q = 9539,9587,9613,9623,9649,9689,9923,9973. Finally,

$$t_{2}(2, q) <5 .15\sqrt{q} \, {\rm for} \, q \leq 13627$$

and q = 13687,13697,13711,14009. Using the new arcs it is shown that

$$t_{2}(2, q) < \sqrt{q}\ln^{0.73}q {\rm for} 109 \leq q \leq 13627\, {\rm and}\, q \in G.$$

Also, as q grows, the positive difference $${\sqrt{q}\ln^{0.73} q-\overline{t}_{2}(2, q)}$$ has a tendency to increase whereas the ratio $${\overline{t}_{2}(2, q)/(\sqrt{q}\ln^{0.73} q)}$$ tends to decrease. Here $${\overline{t}_{2}(2, q)}$$ is the smallest known size of a complete arc in PG(2,q). These properties allow us to conjecture that the estimate $${t_{2}(2,q) < \sqrt{q}\ln ^{0.73}q}$$ holds for all $${q \geq 109.}$$ The new upper bounds are obtained by finding new small complete arcs in PG(2,q) with the help of a computer search using randomized greedy algorithms. Finally, new forms of the upper bound on t 2(2,q) are proposed.

This is a preview of subscription content, log in via an institution to check access.

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

## References

• Abatangelo, V.: A class of complete [(q + 8)/3]-arcs of PG(2,q), with q = 2h and $${h (\geq 6)}$$ even Ars Combinatoria. 16, 103–111 (1983)

• Ball S.: On small complete arcs in a finite plane. Discrete Math. 74, 29–34 (1997)

• Bartoli D., Davydov A.A., Faina G., Marcugini S., Pambianco F.: On sizes of complete arcs in PG(2, q). Discrete Math. 312, 680–698 (2012)

• Bartoli, D., Davydov, A.A., Faina, G., Marcugini, S., Pambianco, F.: New upper bounds on the smallest size of a complete arc in the plane PG(2, q). In: Proc. XIII International Workshop on Algebraic and Combinational Coding Theory, ACCT2012, Pomorie, Bulgaria, pp. 60–66 (2012). http://www.moi.math.bas.bg/moiuser/~ACCT2012/b10.pdf

• Bartoli, D., Davydov, A.A., Marcugini, S., Pambianco, F.: New type of estimate for the smallest size of complete arcs in PG(2, q). In: Proceedings of the XIII International Workshop on Algebraic and Combinational Coding Theory, ACCT2012, Pomorie, Bulgaria, pp. 67–72 (2012). http://www.moi.math.bas.bg/moiuser/~ACCT2012/b11.pdf

• Bartoli D., Davydov A.A., Marcugini S., Pambianco F.: The minimum order of complete caps in PG(4,4). Adv. Math. Commun. 5, 37–40 (2011)

• Bierbrauer, J., Bartoli, D., Faina, G., Marcugini, S., Pambianco, F., Edel, Y.: The structure of quaternary quantum caps. Des. Codes Cryptogr. doi:10.1007/s10623-013-9796-5

• Davydov A.A., Faina G., Marcugini S., Pambianco F.: Computer search in projective planes for the sizes of complete arcs. J. Geom. 82, 50–62 (2005)

• Davydov A.A., Faina G., Marcugini S., Pambianco F.: On sizes of complete caps in projective spaces PG(n,q) and arcs in planes PG(2, q). J. Geom. 94, 31–58 (2009)

• Davydov A.A., Giulietti M., Marcugini S., Pambianco F.: On sharply transitive sets in PG(2, q). Innov. Incid. Geom. 6(−7), 139–151 (2009)

• Davydov A.A., Giulietti M., Marcugini S., Pambianco F.: New inductive constructions of complete caps in PG(N,q), q even. J. Comb. Des. 18, 176–201 (2010)

• Davydov A.A., Giulietti M., Marcugini S., Pambianco F.: Linear nonbinary covering codes and saturating sets in projective spaces. Adv. Math. Commun. 5, 119–147 (2011)

• Davydov A.A., Marcugini S., Pambianco F.: Complete caps in projective spaces PG(n,q). J. Geom. 80, 23–30 (2004)

• Faina G., Giulietti M.: On small dense arcs in Galois planes of square order. Discrete Math. 267, 113–125 (2003)

• Faina G., Pambianco F.: On the spectrum of the values k for which a complete k-cap in PG(n,q) exists. J. Geom. 62, 84–98 (1998)

• Faina G., Pambianco F.: On some 10-arcs for deriving the minimum order for complete arcs in small projective planes. Discrete Math. 208(209), 261–271 (1999)

• Gács A., Szőnyi T.: Random constructions and density results. Des. Codes Cryptogr. 47, 267–287 (2008)

• Giulietti M.: Small complete caps in PG(2, q) for q an odd square. J. Geom. 69, 110–116 (2000)

• Giulietti M.: Small complete caps in Galois affine spaces. J. Algebraic. Combin. 25, 149–168 (2007)

• Giulietti M.: Small complete caps in PG(N,q), q even. J. Combin. Des. 15, 420–436 (2007)

• Giulietti, M., Korchmáros, G., Marcugini, S., Pambianco, F.: Transitive A 6-invariant k-arcs in PG(2, q). Des. Codes Cryptogr. doi:10.1007/s10623-012-9619-0 (to appear).

• Giulietti, M., Ughi, E.: A small complete arc in PG(2, q), qp 2, p ≡ 3 (mod 4). Discrete Math. 208–209, 311–318 (1999)

• Hadnagy E.: Small Complete Arcs in PG(2,p). Finite Fields Appl. 5, 1–12 (1999)

• Hartman A., Raskin L.: Problems and algorithms for covering arrays. Discrete Math. 284, 149–156 (2004)

• Hirschfeld, J.W.P.: Maximum sets in finite projective spaces. In: Lloyd, E.K. (ed.) Surveys in Combinatorics. Lecture Note Series, vol. 82, pp. 55–76. London Math. Soc., Cambridge University Press, Cambridge (1983)

• Hirschfeld, J.W.P.: Projective geometries over finite fields, 2nd edn. Clarendon Press, Oxford (1998)

• Hirschfeld J.W.P., Storme L.: The packing problem in statistics, coding theory and finite projective spaces. J. Stat. Planning Infer. 72, 355–380 (1998)

• Hirschfeld, J.W.P., Storme, L.: The packing problem in statistics, coding theory and finite geometry: update 2001. In: Blokhuis, A., Hirschfeld, J.W.P. et al. (eds.) Finite Geometries, Developments of Mathematics. Proceedings of the Fourth Isle of Thorns Conference, Chelwood Gate 2000, vol. 3, pp. 201–246. Kluwer Academic Publisher, Boston (2001)

• Keri G.: Types of superregular matrices and the number of n-arcs and complete n-arcs in PG(r,q). J. Comb. Des. 14, 363–390 (2006)

• Kim J.H., Vu V.: Small complete arcs in projective planes. Combinatorica 23, 311–363 (2003)

• Korchmáros G.: New examples of complete k-arcs in PG(2, q). Europ. J. Combin. 4, 329–334 (1983)

• Lombardo-Radice L.: Sul problema dei k-archi completi di S 2,q . Boll. Un. Mat. Ital. 11, 178–181 (1956)

• Lisonᄕk P., Marcugini S., Pambianco F.: Constructions of small complete arcs with prescribed symmetry. Contribut. Discrete Math. 3, 14–19 (2008)

• Marcugini, S., Milani, A., Pambianco, F.: Minimal complete arcs in PG(2, q), q ≤  29. J. Combin. Math. Combin. Comput. 47, 19–29 (2003)

• Marcugini, S., Milani, A., Pambianco, F.: Minimal complete arcs in PG(2, q), q ≤  32. In: Proceedings of the XII International Workshop on Algebraic and Combinational Coding Theory, ACCT2010, Novosibirsk, Russia, pp. 217–222 (2010)

• Östergård P.R.J.: Computer search for small complete caps. J. Geom. 69, 172–179 (2000)

• Pellegrino G.: Un’osservazione sul problema dei k-archi completi in S 2,q , con q ≡ 1 (mod 4). Atti Accad. Naz. Lincei Rend. 63, 33–44 (1977)

• Pellegrino G.: Sugli archi completi dei piani PG(2, q), con q dispari, contenenti (q + 3)/2 punti di una conica. Rend. Mat. 12, 649–674 (1992)

• Pellegrino, G.: Archi completi, contenenti (q + 1)/2 punti di una conica, nei piani di Galois di ordine dispari. Rend. Circ. Mat. Palermo (2) 62, 273–308 (1993)

• Polverino O.: Small minimal blocking sets and complete k-arcs in PG(2,p3). Discrete Math. 208(−209), 469–476 (1999)

• Segre B.: Le geometrie di Galois. Ann. Mat. Pura Appl. 48, 1–97 (1959)

• Segre B.: Ovali e curve σ nei piani di Galois di caratteristica due. Atti Accad. Naz. Lincei Rend. 32, 785–790 (1962)

• Segre B.: Introduction to Galois geometries. Atti Accad. Naz. Lincei Mem. 8, 133–236 (1967)

• Szőnyi T.: Small complete arcs in Galois planes. Geom. Dedicata 18, 161–172 (1985)

• Szőnyi T.: Note on the order of magnitude of k for complete k-arcs in PG(2, q). Discrete Math. 66, 279–282 (1987)

• Szőnyi, T.: Complete arcs in Galois planes: Survey. Quaderni del Seminario di Geometrie Combinatorie, vol. 94. Università degli studi di Roma, La Sapienza (1989).

• Szőnyi, T.: Arcs, caps, codes and 3-independent subsets. In: Faina, G., et al. (eds.) Giornate di Geometrie Combinatorie, Università degli studi di Perugia, pp. 57–80, Perugia (1993)

• Szőnyi, T.: Some applications of algebraic curves in finite geometry and combinatorics. In: Bailey, R.A. (ed.) Surveys in Combinatorics, pp. 198–236. Cambridge University Press, Cambridge (1997)

• Thas J.A.: M.D.S. codes and arcs in projective spaces: a survey. Le Matematiche (Catania) 47, 315–328 (1992)

• Ughi, E.: The values $${\sqrt{2q}}$$ and log 2 q: their relationship with k-arcs. Ars Combinatoria. 57, 201–207 (2000).

• Ughi E.: Small almost complete arcs. Discrete Math. 255, 367–379 (2002)

• Voloch J.F.: On the completeness of certain plane arcs II. Eur. J. Combin. 11, 491–496 (1990)

## Author information

Authors

### Corresponding author

Correspondence to Giorgio Faina.

## Rights and permissions

Reprints and Permissions

Bartoli, D., Davydov, A.A., Faina, G. et al. New upper bounds on the smallest size of a complete arc in a finite Desarguesian projective plane. J. Geom. 104, 11–43 (2013). https://doi.org/10.1007/s00022-013-0154-6

• Revised:

• Published:

• Issue Date:

• DOI: https://doi.org/10.1007/s00022-013-0154-6