Skip to main content
Log in

Convex separation by regular pairs

  • Published:
Journal of Geometry Aims and scope Submit manuscript

Abstract

It is known that the existence of a convex (resp., concave) separator between two given functions can be characterized via a simple inequality. The notion of convexity can be generalized applying regular pairs (in other words, two dimensional Chebyshev systems). The aim of the present note is to extend the above mentioned result to this setting. In the proof, a modified version of the classical Carathéodory’s theorem and the characterization of convex functions play the key role.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Subscribe and save

Springer+ Basic
$34.99 /Month
  • Get 10 units per month
  • Download Article/Chapter or eBook
  • 1 Unit = 1 Article or 1 Chapter
  • Cancel anytime
Subscribe now

Buy Now

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Similar content being viewed by others

References

  1. Balaj M., Wa¸sowicz Sz.: Haar spaces and polynomial selections. Math Pannon. 14, 63–70 (2003)

    MathSciNet  MATH  Google Scholar 

  2. Baron K., Matkowski J., Nikodem K.: A sandwich with convexity. Math. Pannon. 5, 139–144 (1994)

    MathSciNet  MATH  Google Scholar 

  3. Bessenyei, M.: Hermite-Hadamard-type inequalities for generalized convex functions. JIPAM. J. Inequal. Pure Appl. Math. 9, Article 63, p. 51 (2008)

  4. Bessenyei M., Páles Zs.: Hadamard-type inequalities for generalized convex functions. Math. Inequal. Appl. 6, 379–392 (2003)

    MathSciNet  MATH  Google Scholar 

  5. Bessenyei M., Páles Zs.: Separation by linear interpolation families. J. Nonlinear Convex Anal. 13, 49–56 (2012)

    MathSciNet  MATH  Google Scholar 

  6. Bonsall, F.F.: The characterization of generalized convex functions. Quart. J. Math. Oxford Ser. (2) 1, 100–111 (1950)

  7. Hyers D.H., Ulam S.M.: Approximately convex functions. Proc. Am. Math. Soc. 3, 821–828 (1952)

    Article  MathSciNet  MATH  Google Scholar 

  8. Házy A., Páles Zs.: On approximately midconvex functions. Bull. London Math. Soc. 36, 339–350 (2004)

    Article  MathSciNet  MATH  Google Scholar 

  9. Karlin, S., Studden, W.J.: Tchebycheff Systems: With Applications in Analysis and Statistics. Pure and Applied Mathematics, vol. XV, Interscience, New York (1966)

  10. Krzyszkowski J.: Generalized convex sets. Rocznyk Nauk.-Dydaktik Prace Mat. 14, 59–68 (1997)

    MathSciNet  MATH  Google Scholar 

  11. Krzyszkowski J.: Approximately generalized convex functions. Math. Pannon. 12, 93–104 (2001)

    MathSciNet  MATH  Google Scholar 

  12. Lay, S.R.: Convex Sets and Their Applications. Wiley-Interscience New York (1982)

  13. Magaril-Il’yaev, G.G., Tikhomirov, V.M.: Convex Analysis: Theory and Applications. American Mathematical Society, Providence (2003)

  14. Niculescu, C.P., Persson L.-E.: Convex Functions and Their Applications. CMS Books in Mathematics, vol. 23, Springer, New York (2006)

  15. Nikodem K., Páles Zs.: Generalized convexity and separation theorems. J. Convex Anal. 14, 239–248 (2007)

    MathSciNet  MATH  Google Scholar 

  16. Nikodem K., Wa¸sowicz Sz.: A sandwich theorem and Hyers-Ulam stability of affine functions. Aequationes Math. 49, 160–164 (1995)

    Article  MathSciNet  MATH  Google Scholar 

  17. Pólya Gy.: On the mean-value theorem corresponding to a given linear homogeneous differential equation. Trans. Am. Math. Soc. 24, 312–324 (1922)

    Article  Google Scholar 

  18. Pólya Gy.: Untersuchungen über Lücken und Singularitäten von Potenzreihen. Math. Z. 29, 549–640 (1929)

    Article  MathSciNet  MATH  Google Scholar 

  19. Páles Zs.: On approximately convex functions. Proc. Am. Math. Soc. 131, 243–252 (2003)

    Article  MATH  Google Scholar 

  20. Wa¸sowicz Sz.: Polynomial selections and separation by polynomials. Studia Math. 120, 75–82 (1996)

    MathSciNet  Google Scholar 

Download references

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Mihály Bessenyei.

Additional information

This research has been supported by the Hungarian Scientific Research Fund (OTKA) Grants NK–81402 and by the TÁMOP 4.2.2.C-11/1/KONV-2012-0010 and TÁMOP 4.2.2/B-10/1-2010-0024 projects implemented through the New Hungary Development Plan co-financed by the European Social Fund, and the European Regional Development Fund.

Rights and permissions

Reprints and permissions

About this article

Cite this article

Bessenyei, M., Szokol, P. Convex separation by regular pairs. J. Geom. 104, 45–56 (2013). https://doi.org/10.1007/s00022-013-0151-9

Download citation

  • Received:

  • Revised:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1007/s00022-013-0151-9

Mathematics Subject Classification (2010)

Keywords

Navigation