Skip to main content
Log in

A generalization of K-contact and (k, μ)-contact manifolds

  • Published:
Journal of Geometry Aims and scope Submit manuscript

Abstract

We study a generalization of K-contact and (k, μ)-contact manifolds, and show that if such manifolds of dimensions ≥ 5 are conformally flat, then they have constant curvature +1. We also show under certain conditions that such manifolds admitting a non-homothetic closed conformal vector field are isometric to a unit sphere. Finally, we show that such manifolds with parallel Ricci tensor are either Einstein, or of zero \({\xi}\)-sectional curvature.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Similar content being viewed by others

References

  1. Bang, K.: Riemannian Geometry of Vector Bundles. Thesis, Michigan State University (1994)

  2. Bang, K., Blair, D.E.: The schouten tensor and conformally flat manifolds. In: Topics in Differential Geometry, Ed. Acad. Romania , pp. 1–28 (2008)

  3. Blair, D.E.: Riemannian geometry of contact and symplectic manifolds. Progress in Mathematics, vol. 203, Birkhauser, Basel (2010)

  4. Blair D.E., Koufogiorgos T.: When is the tangent sphere bundle conformally flat? J. Geom. 49, 55–66 (1994)

    Article  MathSciNet  MATH  Google Scholar 

  5. Blair D.E., Koufogiorgos T., Papantoniou B.J.: Contact metric manifolds satisfying a nullity condition. Israel J. Math. 91, 189–214 (1995)

    Article  MathSciNet  MATH  Google Scholar 

  6. Blair D.E., Sharma R.: Generalization of Myers’ theorem on a contact mani fold. Ill. J. Math. 34, 837–844 (1990)

    MathSciNet  MATH  Google Scholar 

  7. Blair, D.E., Sharma, R.: Three dimensional locally symmetric contact metric manifolds. Bolletino U.M.I. (7) 4-A, 385–390 (1990)

  8. Boeckx E., Cho J.T.: η-parallel contact metric spaces. Differ. Geom. Appl. 22, 275–285 (2005)

    Article  MathSciNet  MATH  Google Scholar 

  9. Calvaruso G., Perrone D., Vanhecke L.: Homogeneity on three-dimensional contact metric manifolds. Isr. J. Math. 114, 301–321 (1999)

    Article  MathSciNet  MATH  Google Scholar 

  10. Ghosh A., Koufogiorgos T., Sharma R.: Conformally flat contact metric manifolds. J. Geom. 70, 66–76 (2001)

    Article  MathSciNet  MATH  Google Scholar 

  11. Ghosh A., Sharma R., Cho J.T.: Contact metric manifolds with η-parallel torsion tensor. Ann. Glob. Anal. Geom. 34, 287–299 (2008)

    Article  MathSciNet  MATH  Google Scholar 

  12. Goldberg S.I.: Curvature and Homology. Academic Press, New York (1962)

    MATH  Google Scholar 

  13. Gouli-Andreou F., Tsolakidou N.: On conformally flat contact metric manifolds. J. Geom. 79, 75–88 (2004)

    Article  MathSciNet  MATH  Google Scholar 

  14. Gouli-Andreou F., Tsolakidou N.: Conformally flat contact metric manifolds with \({Q\xi = \rho\xi}\). Beitrage Algebra Geom. 45, 103–115 (2004)

    MathSciNet  MATH  Google Scholar 

  15. Obata M.: Certain conditions for a Riemannian manifold to be isometric with a sphere. J. Math. Soc. Japan 14, 333–340 (1962)

    Article  MathSciNet  MATH  Google Scholar 

  16. Okumura M.: Some remarks on space with a certain contact structure. Tohoku Math. J. 14, 135–145 (1962)

    Article  MathSciNet  MATH  Google Scholar 

  17. Okumura M.: On infinitesimal conformal and projective transformations of normal contact spaces. Tohoku Math. J. 14, 398–412 (1962)

    Article  MathSciNet  MATH  Google Scholar 

  18. Olszak Z.: On contact metric manifolds. Tohoku Math. J. 31, 247–253 (1979)

    Article  MathSciNet  MATH  Google Scholar 

  19. Perrone D.: Contact metric manifolds whose characteristic vector field is a harmonic vector field. Differ. Geom. Appl. 20, 367–378 (2004)

    Article  MathSciNet  MATH  Google Scholar 

  20. Ross A., Urbano F.: Lagrangian submanifolds of C n with conformal Maslov form and the Whitney sphere. J. Math. Soc. Japan 50, 203–226 (1998)

    Article  MathSciNet  Google Scholar 

  21. Sharma R.: Contact hypersurfaces of Kaehler manifolds. J. Geom. 78, 156–167 (2003)

    Article  MathSciNet  MATH  Google Scholar 

  22. Sharma, R., Blair, D.E.: Conformal motion of contact manifolds with charac teristic vector field in the k-nullity distribution. Ill. J. Math. 40, 553-563 (1996). Addendum: Ill. J. Math. 42, 673-677 (1998)

    Google Scholar 

  23. Sharma R., Vrancken L.: Conformal classification of (k, μ)-contact manifolds. Kodai Math. J. 33, 267–282 (2010)

    Article  MathSciNet  MATH  Google Scholar 

  24. Tanno S.: Some transformations on manifolds with almost contact and contact metric structures, II. Tohoku Math. J. 15, 322–331 (1963)

    Article  MathSciNet  MATH  Google Scholar 

  25. Tanno S.: Locally symmetric K-contact Riemannian manifolds. Proc. Japan Acad. 43, 581–583 (1967)

    Article  MathSciNet  MATH  Google Scholar 

  26. Tanno S.: Variational problems on contact Riemannian manifolds. Trans. Am. Math. Soc. 314, 349–379 (1989)

    Article  MathSciNet  MATH  Google Scholar 

  27. Yano K.: Integral Formulas in Riemannian Geometry. Marcel Dekker, New York (1970)

    MATH  Google Scholar 

Download references

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Ramesh Sharma.

Rights and permissions

Reprints and permissions

About this article

Cite this article

Ghosh, A., Sharma, R. A generalization of K-contact and (k, μ)-contact manifolds. J. Geom. 103, 431–443 (2012). https://doi.org/10.1007/s00022-013-0144-8

Download citation

  • Received:

  • Revised:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1007/s00022-013-0144-8

Mathematics Subject Classification (2010)

Keywords

Navigation