Abstract
Recently, Jungnickel and Tonchev (Des Codes Cryptogr, doi:10.1007/s10623-012-9636-z, 2012) introduced new invariants for simple incidence structures \({\mathcal{D}}\), which admit both a coding theoretic and a geometric description. Geometrically, one considers embeddings of \({\mathcal{D}}\) into projective geometries \({\Pi} = PG(n, q)\), where an embedding means identifying the points of \({\mathcal{D}}\) with a point set V in \({\Pi}\) in such a way that every block of \({\mathcal{D}}\) is induced as the intersection of V with a suitable subspace of \({\Pi}\). Then the new invariant, the geometric dimension \({\mathrm{geomdim}_{q}\mathcal{D}}\) of \({\mathcal{D}}\), is the smallest value of n for which \({\mathcal{D}}\) may be embedded into the n-dimensional projective geometry PG(n, q). It is the aim of this paper to discuss a few additional general results regarding these invariants, and to determine them for some further examples, mainly some small configurations; this will answer some problems posed in (Des Codes Cryptogr, doi:10.1007/s10623-012-9636-z, 2012).
This is a preview of subscription content, access via your institution.
References
Abdul-Elah M.S., Al-Dhahir M.W., Jungnickel D.: 83 in PG(2, q). Arch. Math. (Basel) 49, 141–150 (1987)
Beth T., Jungnickel D., Lenz H.: Design Theory, 2nd edn. Cambridge University Press, Cambridge (1999)
Coxeter H.S.M.: Twelve points in PG(5, 3) with 95040 self-transformations. Philos. Trans. R. Soc. Lond. Ser. A Math. Phys. Eng. Sci. 247, 279–293 (1958)
Ghinelli, D., Jungnickel, D., Metsch, K.: Remarks on polarity designs. Des. Codes Cryptogr. (2012). doi:10.1007/s10623-012-9748-5
Glynn D.: On the anti-pappian 103 and its construction. Geom. Dedic. 77, 71–75 (1999)
Gropp H.: Configurations and their realization. Discret. Math. 174, 137–151 (1997)
Grünbaum, B.: Configurations of points and lines. Graduate Studies in Mathematics, vol. 103. American Mathematical Society, Providence (2009)
Hirschfeld J.W.P., Thas J.A.: General Galois Geometries. Oxford University Press, Oxford (1991)
Jungnickel, D.: Incidence structures, codes, and Galois geometries. In: Charpin, P. et al., (eds.) Finite Fields and Their Applications: Character Sums and Polynomials. Walter De Gruyter, Berlin (To appear)
Jungnickel D., Tonchev V.D.: A Hamada type characterization of the classical geometric designs. Des. Codes Cryptogr. 65, 15–28 (2012)
Jungnickel, D., Tonchev, V.D.: New invariants for incidence structures. Des. Codes Cryptogr. doi:10.1007/s10623-012-9636-z(2012)
Kantor S.: Die Configurationen (3, 3)10. Sitz.ber. Sächs. Akad. Wiss. Leipz. Math.-Nat.wiss. Kl. 84, 1291–1314 (1881)
Rigby J.F.: Affine subplanes of finite projective planes. Canad. J. Math. 17, 977–1009 (1965)
Tallini G.: On caps of kind s in a Galois r-dimensional space. Acta Arith. 7, 19–28 (1961)
Author information
Authors and Affiliations
Corresponding author
Rights and permissions
About this article
Cite this article
Winter, S.D., Jungnickel, D. The geometric dimension of some small configurations. J. Geom. 103, 417–430 (2012). https://doi.org/10.1007/s00022-012-0140-4
Received:
Published:
Issue Date:
DOI: https://doi.org/10.1007/s00022-012-0140-4
Mathematics Subject Classification (2010)
- 51A45
- 05B05
- 05B30
- 94B27
Keywords
- Incidence structure
- configuration
- projective space
- linear code
- embedding theorems