Skip to main content

The geometric dimension of some small configurations

Abstract

Recently, Jungnickel and Tonchev (Des Codes Cryptogr, doi:10.1007/s10623-012-9636-z, 2012) introduced new invariants for simple incidence structures \({\mathcal{D}}\), which admit both a coding theoretic and a geometric description. Geometrically, one considers embeddings of \({\mathcal{D}}\) into projective geometries \({\Pi} = PG(n, q)\), where an embedding means identifying the points of \({\mathcal{D}}\) with a point set V in \({\Pi}\) in such a way that every block of \({\mathcal{D}}\) is induced as the intersection of V with a suitable subspace of \({\Pi}\). Then the new invariant, the geometric dimension \({\mathrm{geomdim}_{q}\mathcal{D}}\) of \({\mathcal{D}}\), is the smallest value of n for which \({\mathcal{D}}\) may be embedded into the n-dimensional projective geometry PG(n, q). It is the aim of this paper to discuss a few additional general results regarding these invariants, and to determine them for some further examples, mainly some small configurations; this will answer some problems posed in (Des Codes Cryptogr, doi:10.1007/s10623-012-9636-z, 2012).

This is a preview of subscription content, access via your institution.

References

  1. Abdul-Elah M.S., Al-Dhahir M.W., Jungnickel D.: 83 in PG(2, q). Arch. Math. (Basel) 49, 141–150 (1987)

    Article  MathSciNet  MATH  Google Scholar 

  2. Beth T., Jungnickel D., Lenz H.: Design Theory, 2nd edn. Cambridge University Press, Cambridge (1999)

    Book  Google Scholar 

  3. Coxeter H.S.M.: Twelve points in PG(5, 3) with 95040 self-transformations. Philos. Trans. R. Soc. Lond. Ser. A Math. Phys. Eng. Sci. 247, 279–293 (1958)

    Article  MathSciNet  MATH  Google Scholar 

  4. Ghinelli, D., Jungnickel, D., Metsch, K.: Remarks on polarity designs. Des. Codes Cryptogr. (2012). doi:10.1007/s10623-012-9748-5

  5. Glynn D.: On the anti-pappian 103 and its construction. Geom. Dedic. 77, 71–75 (1999)

    Article  MathSciNet  MATH  Google Scholar 

  6. Gropp H.: Configurations and their realization. Discret. Math. 174, 137–151 (1997)

    Article  MathSciNet  MATH  Google Scholar 

  7. Grünbaum, B.: Configurations of points and lines. Graduate Studies in Mathematics, vol. 103. American Mathematical Society, Providence (2009)

  8. Hirschfeld J.W.P., Thas J.A.: General Galois Geometries. Oxford University Press, Oxford (1991)

    MATH  Google Scholar 

  9. Jungnickel, D.: Incidence structures, codes, and Galois geometries. In: Charpin, P. et al., (eds.) Finite Fields and Their Applications: Character Sums and Polynomials. Walter De Gruyter, Berlin (To appear)

  10. Jungnickel D., Tonchev V.D.: A Hamada type characterization of the classical geometric designs. Des. Codes Cryptogr. 65, 15–28 (2012)

    Article  MathSciNet  MATH  Google Scholar 

  11. Jungnickel, D., Tonchev, V.D.: New invariants for incidence structures. Des. Codes Cryptogr. doi:10.1007/s10623-012-9636-z(2012)

  12. Kantor S.: Die Configurationen (3, 3)10. Sitz.ber. Sächs. Akad. Wiss. Leipz. Math.-Nat.wiss. Kl. 84, 1291–1314 (1881)

    Google Scholar 

  13. Rigby J.F.: Affine subplanes of finite projective planes. Canad. J. Math. 17, 977–1009 (1965)

    Article  MathSciNet  MATH  Google Scholar 

  14. Tallini G.: On caps of kind s in a Galois r-dimensional space. Acta Arith. 7, 19–28 (1961)

    MathSciNet  MATH  Google Scholar 

Download references

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Dieter Jungnickel.

Rights and permissions

Reprints and Permissions

About this article

Cite this article

Winter, S.D., Jungnickel, D. The geometric dimension of some small configurations. J. Geom. 103, 417–430 (2012). https://doi.org/10.1007/s00022-012-0140-4

Download citation

  • Received:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1007/s00022-012-0140-4

Mathematics Subject Classification (2010)

  • 51A45
  • 05B05
  • 05B30
  • 94B27

Keywords

  • Incidence structure
  • configuration
  • projective space
  • linear code
  • embedding theorems