Skip to main content
Log in

Translations in affine Klingenberg spaces

  • Published:
Journal of Geometry Aims and scope Submit manuscript

Abstract

An old question regarding the world we live in concerns what is real regarding points and lines: if two distinct lines intersect, is their intersection a unique point? In this paper, we take the approach that the answer is no, that all the points in the intersection are somehow close to one another (neighbourly) and that two non-neighbourly points determine a unique line. These are the Affine Klingenberg spaces (AK-spaces). How does one put a logical structure on points and lines that reflect the preceding view of reality? History has shown that such a structure is based upon the concept of coordinatization, which leads naturally to algebraic structures that allow a faithful representation of incidence, which in turn reflects the existence of relations between points and lines that recognise incidence. The preceding view of reality is not new, and the history of this subject is of approaches that are too general (there are conditions on neighbourly points). Our approach is novel in that it is based upon a minimum number of assumptions that yield the existence of dilatations that are translations: the corner stones of coordinatization.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Similar content being viewed by others

References

  1. Artin E.: Geometric Algebra, 3rd printing. Interscience, New York (1964)

    Google Scholar 

  2. Bacon P.: An Introduction to Klingenberg Planes (I to IV). P.Y.Bacon Publisher, Gainsville (1979)

    Google Scholar 

  3. Baker C.A., Lane N.D., Lorimer J.W.: An affine characterization of Moufang projective Klingenberg planes. Result. Math. 17, 27–36 (1990)

    MathSciNet  MATH  Google Scholar 

  4. Bisztriczky, T., Lorimer, J.W.: Axiom Systems for Affine Klingenberg Spaces. Research and Lecture Notes in Mathematics, Combinatorics 88, vol. I. pp. 185–200. Mediterranean Press, Rende (1991)

  5. Bisztriczky T., Lorimer J.W.: On hyperplanes and free subspaces of affine Klingenberg spaces. Aequationes Math. 40, 121–136 (1994)

    Article  MathSciNet  Google Scholar 

  6. Bisztriczky T., Lorimer J.W.: Operations on free subspaces in affine Klingenberg spaces. Bull. Belg. Math. Soc. 2, 99–108 (1995)

    MathSciNet  MATH  Google Scholar 

  7. Bisztriczky T., Lorimer J.W.: Homomorphisms of affine spaces. Abh. Math. Sem. Univ. Hamburg 65, 283–292 (1995)

    Article  MathSciNet  MATH  Google Scholar 

  8. Dugas M.: Verallgemeinerte André–Ebenen mit epimorphismen auf Hjelmslev–Ebenen. Geom. Dedicata 8, 105–123 (1979)

    Article  MathSciNet  MATH  Google Scholar 

  9. Klingenberg W.: Projektive Geometrien mit Homomorphismus. Math. Ann. 132, 180–200 (1956)

    Article  MathSciNet  MATH  Google Scholar 

  10. Leißner W., Severin R., Wolf K.: Affine geometry over free unitary modules. J. Geom. 25, 101–120 (1985)

    Article  MathSciNet  MATH  Google Scholar 

  11. Leißner W.: On classifying affine Barbilian spaces. Result. Math. 12, 157–165 (1987)

    MATH  Google Scholar 

  12. Leißner W.: Rings of stable rank 2 are Barbilian rings. Result. Math. 20, 530–537 (1991)

    MATH  Google Scholar 

  13. Lorimer J.W., Lane N.D.: Desarguesian affine Hjelmslev planes. J. Reine Angew. Math. 278/279, 336–352 (1975)

    Article  MathSciNet  Google Scholar 

  14. Lück H.H.: Projektive Hjelmslevräume. J. Reine Angew. Math. 243, 121–158 (1970)

    Article  MathSciNet  MATH  Google Scholar 

  15. Lüneberg H.: Affine Hjelmslev–Ebenen mit transitiver Translationsgruppe. Math. Z. 79, 260–288 (1962)

    Article  MathSciNet  Google Scholar 

  16. Machala F.: Desarguesian Affine Ebenen mit Homomorphismus. Geom. Dedicata 3, 493–509 (1975)

    Article  MathSciNet  MATH  Google Scholar 

  17. Machala, F.: Fundamentalsätze der Projektivem Geom. mit Homomorphismus. Aca. Nakl. Ces Akademie Vec Praha (1980)

  18. Schmidt S.E.: Grundlegungen zu einer allgemeinen affinen Geometrie. Birkhäuser, Basel (1995)

    MATH  Google Scholar 

  19. Yale P.B.: Geometry and Symmetry. Holden-Day, Holden-Day Series in Mathematics (1968)

    MATH  Google Scholar 

Download references

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to T. Bisztriczky.

Additional information

T. Bisztriczky was supported by a NSERC Discovery Grant.

Rights and permissions

Reprints and permissions

About this article

Cite this article

Bisztriczky, T., Lorimer, J.W. Translations in affine Klingenberg spaces. J. Geom. 99, 15–42 (2010). https://doi.org/10.1007/s00022-011-0067-1

Download citation

  • Received:

  • Revised:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1007/s00022-011-0067-1

Mathematics Subject Classification (2010)

Keywords

Navigation