Skip to main content
Log in

Invariant submanifolds of Sasakian space forms

  • Published:
Journal of Geometry Aims and scope Submit manuscript

Abstract

In the present study, we consider isometric immersions \({f : M \rightarrow \tilde{M}(c)}\) of (2n + 1)-dimensional invariant submanifold M 2n+1 of (2m + 1) dimensional Sasakian space form \({\tilde{M}^{2m+1}}\) of constant \({ \varphi}\)-sectional curvature c. We have shown that if f satisfies the curvature condition \({\overset{\_}{R}(X, Y) \cdot \sigma =Q(g, \sigma)}\) then either M 2n+1 is totally geodesic, or \({||\sigma||^{2}=\frac{1}{3}(2c+n(c+1)),}\) or \({||\sigma||^{2}(x) > \frac{1}{3}(2c+n(c+1)}\) at some point x of M 2n+1. We also prove that \({\overset{\_ }{R}(X, Y)\cdot \sigma = \frac{1}{2n}Q(S, \sigma)}\) then either M 2n+1 is totally geodesic, or \({||\sigma||^{2}=-\frac{2}{3}(\frac{1}{2n}\tau -\frac{1}{2}(n+2)(c+3)+3)}\), or \({||\sigma||^{2}(x) > -\frac{2}{3}(\frac{1}{2n} \tau (x)-\frac{1}{2} (n+2)(c+3)+3)}\) at some point x of M 2n+1.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Similar content being viewed by others

References

  1. Asperti A.C., Lobos G.A., Mercuri F.: Pseudo-paralel immersions in space forms. Math. Contemp. 17, 59–70 (1999)

    MATH  MathSciNet  Google Scholar 

  2. Asperti A.C., Lobos G.A., Mercuri F.: Pseudo-parallel immersions of a space form. Adv. Geom. 2, 57–71 (2002)

    Article  MATH  MathSciNet  Google Scholar 

  3. Blair D.E.: Contact Manifolds in Riemannian Geometry. Lectures Notes in Mathematics, vol. 509. Springer, Berlin (1976)

    Google Scholar 

  4. Boeckx E., Kowalski O., Vanhecke L.: Riemannian Manifolds of Conullity Two. World Scientific, Singapore (1996)

    MATH  Google Scholar 

  5. Chen B.Y.: Geometry of Submanifolds. Dekker, New York (1973)

    MATH  Google Scholar 

  6. Deprez J.: Semi-parallel surfaces in Euclidean space. J. Geom. 25, 192–200 (1985)

    Article  MATH  MathSciNet  Google Scholar 

  7. Deprez J.: Semi-parallel hypersurfaces. Rend. Sem. Mat. Univ. Politecn. Torino 44, 303–316 (1986)

    MATH  MathSciNet  Google Scholar 

  8. Derdzinski A., Roter W.: On conformally symmetric manifolds with metrics of indices 0 and 1. Tensor, N. S. 31, 256–259 (1977)

    MathSciNet  Google Scholar 

  9. Deszcz R.: On pseudosymmetric spaces. Bull. Soc. Belg. Math. Ser. A 44, 1–34 (1992)

    MATH  MathSciNet  Google Scholar 

  10. Deszcz R., Verstralen L., Yaprak Ş.: Pseudosymmetric hypersurfaces in 4-dimensional space of constant curvature. Bull. Ins. Math. Acad. Sinica 22, 167–179 (1994)

    MATH  Google Scholar 

  11. Dillen F.: Semi-parallel hypersurfaces of a real space form. Israel J. Math. 75, 193–202 (1991)

    Article  MATH  MathSciNet  Google Scholar 

  12. Ferus D.: Immersions with parallel second fundamental form. Math. Z. 140, 87–93 (1974)

    Article  MATH  MathSciNet  Google Scholar 

  13. Gouli-Andreou F., Tsolakidou N.: Conformally flat contact metric manifolds with \({Q\xi =\varrho \xi}\). Beiträge Algebra Geom. 45, 103–115 (2004)

    MATH  MathSciNet  Google Scholar 

  14. Kon M.: Invariant submanifolds of normal contact metric manifoldds. Kodai Math. Sem. Rep. 25, 330–336 (1973)

    Article  MATH  MathSciNet  Google Scholar 

  15. Kowalski O.: An explicit classification of 3-dimensional Riemannian spaces satisfying R(X, Y) · R = 0. Czechoslov. Math. J. 46, 427–474 (1996)

    MATH  Google Scholar 

  16. Lumiste Ü.: Semi-symmetric submanifolds as the second order envelope of symmetric submanifolds. Proc. Estonian Acad. Sci. Phys. Math. 39, 1–8 (1990)

    MATH  MathSciNet  Google Scholar 

  17. Nomizu K.: On hypersurfaces satisfying a certain condition on the curvature tensor. Tohoku Math. J. 20, 46–59 (1968)

    Article  MATH  MathSciNet  Google Scholar 

  18. Özgür C., Sular S., Murathan C.: On pseudoparallel invariant submanifolds of contact metric manifolds. Bull. Transilv. Univ. Braşov Ser. B (N.S.) 14(49 Suppl.), 227–234 (2007)

    Google Scholar 

  19. Szabó Z.I.: Structure theorems on Riemannian manifolds satisfying R(X, Y) · R = 0, I, Local version. J. Differ. Geom. 17, 531–582 (1982)

    MATH  Google Scholar 

  20. Szabó Z.I.: Structure theorems on Riemannian manifolds satisfying R(X, Y) · R = 0, II, Global version. Geom. Dedicata 19, 65–108 (1985)

    Article  MATH  MathSciNet  Google Scholar 

  21. Szabó Z.I.: Classification and construction of complete hypersurfaces satisfying R(X, Y) · R = 0. Acta Sci. Math. (Szeged) 47, 321–348 (1984)

    MATH  MathSciNet  Google Scholar 

  22. Takagi H.: An example of a Riemannian manifold satisfying R(X, Y) · R = 0 but not (∇R = 0). Tohoku Math. J. 24, 105–108 (1972)

    Article  MATH  MathSciNet  Google Scholar 

  23. Yano K., Kon M.: Structures on Manifolds. World Scientific, Singapore (1984)

    MATH  Google Scholar 

Download references

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Ahmet Yıldız.

Additional information

This paper was supported by the Dumlupınar University research found (No: 2004-9).

Rights and permissions

Reprints and permissions

About this article

Cite this article

Yıldız, A., Murathan, C. Invariant submanifolds of Sasakian space forms. J. Geom. 95, 135–150 (2009). https://doi.org/10.1007/s00022-009-0011-9

Download citation

  • Received:

  • Revised:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1007/s00022-009-0011-9

Mathematics Subject Classification (2000)

Keywords

Navigation