Skip to main content
Log in

Asymptotic Stability of Rarefaction Waves for Hyperbolized Compressible Navier–Stokes Equations

  • Published:
Journal of Mathematical Fluid Mechanics Aims and scope Submit manuscript

Abstract

We consider a model of one dimensional isentropic compressible Navier–Stokes equations for which the classical Newtonian flow is replaced by a Maxwell flow. We establish the asymptotic stability of rarefaction waves for this model under some small conditions on initial perturbations and amplitude of the waves. The proof is based on \(L^2\) energy methods.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Subscribe and save

Springer+ Basic
$34.99 /Month
  • Get 10 units per month
  • Download Article/Chapter or eBook
  • 1 Unit = 1 Article or 1 Chapter
  • Cancel anytime
Subscribe now

Buy Now

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Similar content being viewed by others

Data Availibility

Data sharing not applicable to this article as no datasets were generated or analysed during the current study.

References

  1. Bai, Y., He, L., Zhao, H.: Nonlinear stability of rarefaction waves for a hyperbolic system with Cattaneo’s law. Commun. Pure. Appl. Anal. 20, 2441–2474 (2021)

    Article  MathSciNet  MATH  Google Scholar 

  2. Bresch, D., Prange, C.: Newtonian limit for weakly viscoelastic fluid flows. SIAM J. Math. Anal. 46(2), 1116–1159 (2014)

    Article  MathSciNet  MATH  Google Scholar 

  3. Chakraborty, D., Sader, J.E.: Constitutive models for linear compressible viscoelastic flows of simple liquids at nanometer length scales. Phys. Fluids 27, 052002-1–052002-13 (2015)

    Article  ADS  MATH  Google Scholar 

  4. Fernández Sare, H.D., Muñoz Rivera, J.E.: Optimal rates of decay in 2-D thermoelasticity with second sound. J. Math. Phys. 53, 073509 (2012)

    Article  ADS  MathSciNet  MATH  Google Scholar 

  5. Fernández Sare, H.D., Racke, R.: On the stability of damped Timoshenko systems—Cattaneo versus Fourier law. Arch. Ration. Mech. Anal. 194, 221–251 (2009)

    Article  MathSciNet  MATH  Google Scholar 

  6. Freistühler, H.: A Galilei invariant version of Yong’s model. arXiv:2012.09059 (2021)

  7. Goodman, J.: Nonlinear asymptotic stability of viscous shock profiles for conservation laws. Arch. Ration. Mech. Anal. 5(4), 325–344 (1986)

    Article  MathSciNet  MATH  Google Scholar 

  8. Hong, H., Huang, F.: Asymptotic behavior of solutions toward the superposition of contact discontinuity and shock wave for compressible Navier–Stokes equations with free boundary. Acta Math. Sci. 32(1), 389–412 (2012)

    Article  MathSciNet  MATH  Google Scholar 

  9. Hu, Y., Wang, N.: Global existence versus blow-up results for one dimensional compressible Navier–Stokes equations with Maxwell’s law. Math. Nachr. 292, 826–840 (2019)

    Article  MathSciNet  MATH  Google Scholar 

  10. Hu, Y., Wang, Z.: Linear stability of viscous shock wave for 1-D compressible Navier–Stokes equations with Maxwell’s law. Q. Appl. Math. 70(2), 221–235 (2022)

    Article  MathSciNet  MATH  Google Scholar 

  11. Hu, Y., Racke, R., Wang, N.: Formation of singularities for one-dimensional relaxed compressible Navier–Stokes equations. J. Differ. Eqs. 327, 145–165 (2022)

    Article  ADS  MathSciNet  MATH  Google Scholar 

  12. Huang, F., Li, J., Matsumura, A.: Asymptotic stability of combination of viscous contact wave with rarefaction waves for one-dimensional compressible Navier–Stokes system. Arch. Ration. Mech. Anal. 197, 89–116 (2010)

    Article  MathSciNet  MATH  Google Scholar 

  13. Kanel, Y.I.: On a model system of equations of one-dimensional gas motions. J. Differ. Equ. 4, 374–380 (1968)

    MATH  Google Scholar 

  14. Kawashima, S., Matsumura, A.: Asymptotic stability of traveling wave solutions of systems for one-dimensional gas motion. Commun. Math. Phys. 101(1), 97–127 (1985)

    Article  ADS  MathSciNet  MATH  Google Scholar 

  15. Kawashima, S., Tanaka, Y.: Stability of rarefaction waves for a model system of a radiating gas. Kyushu J. Math. 58, 211–250 (2004)

    Article  MathSciNet  MATH  Google Scholar 

  16. Kawashima, S., Zhu, P.: Asymptotic stability of rarefaction wave for the Navier–Stokes equations for a compressible fluid wave in the half space. Arch. Ration. Mech. Anal. 194, 105–132 (2009)

    Article  MathSciNet  MATH  Google Scholar 

  17. Kawashima, S., Matsumura, A., Nishihara, K.: Asymptotic behavior of solutions for the equations of a viscous heat conductive gas. Proc. Jpn. Acad. 62, 249–252 (1986)

    MathSciNet  MATH  Google Scholar 

  18. Lions, P.L., Masmoudi, N.: Global solutions for some Oldroyd models of non-Newtonian flows. Chin. Ann. Math. Ser. B 21, 131–146 (2000)

    Article  MathSciNet  MATH  Google Scholar 

  19. Liu, T.-P.: Shock waves for compressible Navier–Stokes equations are stable. Commun. Pure Appl. Math. 39(5), 565–594 (1986)

    Article  MathSciNet  MATH  Google Scholar 

  20. Maisano, G., Migliardo, P., Aliotta, F., Vasi, C., Wanderlingh, F., D’Arrigo, G.: Evidence of anomalous acoustic behavior from brillouinscattering in supercooledvater. Phys. Rev. Lett. 52, 1025 (1984)

    Article  ADS  Google Scholar 

  21. Matsumura, A.: Asymptotic toward rarefaction wave of solutions of the Broadwell model of a discrete velocity gas. Jpn. J. Appl. Math. 4, 489–502 (1987)

    Article  MathSciNet  MATH  Google Scholar 

  22. Matsumura, A., Mei, M.: Convergence to travelling fronts of solutions of the p-system with viscosity in the presence of a boundary. Arch. Ration. Mech. Anal. 146(1), 1–22 (1999)

    Article  MathSciNet  MATH  Google Scholar 

  23. Matsumura, A., Nishihara, K.: On the stability of the traveling wave solutions of a one-dimensional model system for compressible viscous gas. Jpn. J. Appl. Math. 2(1), 17–25 (1985)

    Article  MATH  Google Scholar 

  24. Matsumura, A., Nishihara, K.: Asymptotic toward the rarefaction waves of solutions of a one-dimensional model system for compressible viscous gas. Jpn. J. Appl. Math. 3, 1–13 (1986)

    Article  MathSciNet  MATH  Google Scholar 

  25. Matsumura, A., Nishihara, K.: Global stability of the rarefaction waves of a one-dimensional model system for compressible viscous gas. Commun. Math. Phys. 144, 325–335 (1992)

    Article  ADS  MathSciNet  MATH  Google Scholar 

  26. Matsumura, A., Nishihara, K.: Large-time behaviors of solutions to an inflow problem in the half space for a one-dimensional system of compressible viscous gas. Commun. Math. Phys. 222(3), 449–474 (2001)

    Article  ADS  MathSciNet  MATH  Google Scholar 

  27. Maxwell, J.C.: On the dynamics theory of gases. Philos. Trans. R. Soc. Lond. 157, 49–88 (1867)

    ADS  Google Scholar 

  28. Molinet, L., Talhouk, R.: Newtonian limit for weakly viscoelastic fluid flows of Oldroyd type. SIAM J. Math. Anal. 39(5), 1577–1594 (2008)

    Article  MathSciNet  MATH  Google Scholar 

  29. Nakamura, K., Nakamura, T., Kawashima, S.: Asymptotic stability of rarefaction waves for a hyperbolic system of balance laws. Kinetic Related Models 12(4), 923–944 (2019)

    Article  MathSciNet  MATH  Google Scholar 

  30. Pelton, M., Chakraborty, D., Malachosky, E., Guyot-Sionnest, P., Sader, J.E.: Viscoelastic flows in simple liquids generated by vibrating nanostructures. Phys. Rev. Lett. 111, 244502 (2013)

    Article  ADS  Google Scholar 

  31. Quintanilla, R., Racke, R.: Addendum to: qualitative aspects of solutions in resonators. Arch. Mech. 63, 429–435 (2011)

    MATH  Google Scholar 

  32. Renardy, M., Hrusa, W.J., Nohel, J.A.: Mathematical problems in viscoelasticity. In: Pitman Monographs and Surveys in Pure and Applied Mathematics, vol. 35. Longman Scientific and Technical, Harlow; Wiley, New York (1987)

  33. Sette, F., Ruocco, G., Krisch, M., Bergmann, U., Masciovecchio, C., Mazzacurati, V., Signorelli, G., Verbeni, R.: Collective dynamics in water by high energy resolution inelastic X-ray scattering. Phys. Rev. Lett. 75, 850 (1995)

    Article  ADS  Google Scholar 

  34. Szepessy, A., Xin, Z.: Nonlinear stability of viscous shock waves. Arch. Ration. Mech. Anal. 122(1), 53–103 (1993)

    Article  MathSciNet  MATH  Google Scholar 

  35. Zhou, Z., Zhu, C., Zi, R.: Global well-posedness and decay rates for the three dimensional compressible Oldroyd-B model. J. Differ. Equ. 265, 1259–1278 (2018)

    Article  ADS  MathSciNet  MATH  Google Scholar 

Download references

Acknowledgements

Yuxi Hu’s research is supported by NNSFC (Grant No. 11701556) and Yue Qi Young Scholar project, China University of Mining and Technology (Beijing).

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Yuxi Hu.

Ethics declarations

Conflict of interest

On behalf of all authors, the corresponding author states that there is no conflict of interest.

Additional information

Communicated by T. Nishida.

Publisher's Note

Springer Nature remains neutral with regard to jurisdictional claims in published maps and institutional affiliations.

Rights and permissions

Springer Nature or its licensor (e.g. a society or other partner) holds exclusive rights to this article under a publishing agreement with the author(s) or other rightsholder(s); author self-archiving of the accepted manuscript version of this article is solely governed by the terms of such publishing agreement and applicable law.

Reprints and permissions

About this article

Check for updates. Verify currency and authenticity via CrossMark

Cite this article

Hu, Y., Wang, X. Asymptotic Stability of Rarefaction Waves for Hyperbolized Compressible Navier–Stokes Equations. J. Math. Fluid Mech. 25, 90 (2023). https://doi.org/10.1007/s00021-023-00833-4

Download citation

  • Accepted:

  • Published:

  • DOI: https://doi.org/10.1007/s00021-023-00833-4

Keywords

Mathematics Subject Classification

Navigation