Skip to main content
Log in

Uniform Linear Inviscid Damping and Enhanced Dissipation Near Monotonic Shear Flows in High Reynolds Number Regime (I): The Whole Space Case

  • Published:
Journal of Mathematical Fluid Mechanics Aims and scope Submit manuscript

Abstract

We study the dynamics of the two dimensional Navier Stokes equations linearized around a strictly monotonic shear flow on \({\mathbb {T}}\times {\mathbb {R}}\). The main task is to understand the associated Rayleigh and Orr–Sommerfeld equations, under the natural assumption that the linearized operator around the monotonic shear flow in the inviscid case has no discrete eigenvalues. We obtain precise control of solutions to the Orr–Sommerfeld equations in the high Reynolds number limit, using the perspective that the nonlocal term can be viewed as a compact perturbation with respect to the main part that includes the small diffusion term. As a corollary, we give a detailed description of the linearized flow in Gevrey spaces (linear inviscid damping) that are uniform with respect to the viscosity, and enhanced dissipation type decay estimates. The key difficulty is to accurately capture the behavior of the solution to Orr–Sommerfeld equations in the critical layer. In this paper we consider the case of shear flows on \({\mathbb {T}}\times {\mathbb {R}}\). The case of bounded channels poses significant additional difficulties, due to the presence of boundary layers, and will be addressed elsewhere.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Subscribe and save

Springer+ Basic
$34.99 /Month
  • Get 10 units per month
  • Download Article/Chapter or eBook
  • 1 Unit = 1 Article or 1 Chapter
  • Cancel anytime
Subscribe now

Buy Now

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Similar content being viewed by others

Notes

  1. We should mention that there are many important nonlinear stability results for fluid equations in Lyapunov or orbital sense based on variational argument, see Arnold [1] and recent works [9, 17] for more references. Our focus is dynamic stability, or asymptotic stability, which requires a more precise understanding on the evolution of solutions.

  2. The study of the Orr–Sommerfeld equation has a long history. We refer to [20, 21] for an introduction to other important aspects of the equation.

  3. Strictly speaking the test functions need to be at least Gevrey-2 smooth due to the strong growth of the symbol.

References

  1. Arnold, V., Khesin, B.: Topological Methods in Hydrodynamics. Springer, New York (1998)

    Book  MATH  Google Scholar 

  2. Almog, Y., Helffer, B.: On the stability of laminar flows between plates. Arch. Ration. Mech. Anal. 241, 1281–1401 (2021)

    Article  MathSciNet  MATH  Google Scholar 

  3. Bedrossian, J., He, S.: Inviscid damping and enhanced dissipation of the boundary layer for 2D Navier–Stokes linearized around Couette flow in a channel. Commun. Math. Phys. 379(1), 177–226 (2020)

    Article  MathSciNet  MATH  ADS  Google Scholar 

  4. Bedrossian, J., Masmoudi, N.: Inviscid damping and the asymptotic stability of planar shear flows in the 2D Euler equations. Publ. Math. Inst. Hautes Etudes Sci. 122, 195–300 (2015)

    Article  MathSciNet  MATH  Google Scholar 

  5. Bedrossian, J., Coti Zelati, M., Vicol, V.: Vortex axisymmetrization, inviscid damping, and vorticity depletion in the linearized 2D Euler equations. Ann. PDE 5(4), 1–192 (2019)

    MathSciNet  MATH  Google Scholar 

  6. Bedrossian, J., Vicol, V.: The Mathematical Analysis of the Incompressible Euler and Navier–Stokes Equations: An Introduction. AMS Books (to appear)

  7. Bedrossian, J., Masmoudi, N., Vicol, V.: Enhanced dissipation and inviscid damping in the inviscid limit of the Navier–Stokes equations near the two dimensional Couette flow. Arch. Ration. Mech. Anal. 219, 1087–1159 (2016)

    Article  MathSciNet  MATH  Google Scholar 

  8. Bouchet, F., Morita, H.: Large time behavior and asymptotic stability of the 2D Euler and linearized Euler equations. Physica D 239, 948–966 (2010)

    Article  MathSciNet  MATH  ADS  Google Scholar 

  9. Choi, K., Lim, D.: Stability of radially symmetric, monotone vorticities of 2D Euler equations. arXiv:2103.11724

  10. Chen, Q., Li, T., Wei, D., Zhang, Z.: Transition threshold for the 2-D Couette flow in a finite channel. Arch. Ration. Mech. Anal. 238(1), 125–183 (2020)

    Article  MathSciNet  MATH  Google Scholar 

  11. Chen, Q., Wei, D., Zhang, Z.: Linear stability of pipe Poiseuille flow at high Reynolds number regime. CPAM online https://doi.org/10.1002/cpa.22054, see also arXiv:1910.14245 (2019)

  12. Chen, Q., Wei, D., Zhang, Z.: Linear inviscid damping and enhanced dissipation for monotone shear flows. Commun. Math. Phys. (2022). https://doi.org/10.1007/s00220-022-04597-2

    Article  MATH  Google Scholar 

  13. Coti Zelati, M., Elgindi, T., Widmayer, K.: Enhanced dissipation in the Navier-Stokes equations near the Poiseuille flow. Commun. Math. Phys. 378(2), 987–1010 (2020)

    Article  MathSciNet  MATH  ADS  Google Scholar 

  14. Engel, K., Nagel, R.: One-Parameter Semigroups for Linear Evolution Equations. Graduate Texts in Mathematics, vol. 194. Springer, New York (2000)

    MATH  Google Scholar 

  15. Gallay, T.: Enhanced dissipation and axisymmetrization of two-dimensional viscous vortices. Arch. Ration. Mech. Anal. 230, 939–975 (2018)

    Article  MathSciNet  MATH  Google Scholar 

  16. Gallay, T., Wayne, E.: Global stability of vortex solutions of the two dimensional Navier–Stokes equation. Commun. Math. Phys. 255, 97–129 (2005)

    Article  MathSciNet  MATH  ADS  Google Scholar 

  17. Gallay, T., Sverak, V.: Arnold’s variational principle and its application to the stability of planar vortices. Preprint arXiv:2110.13739

  18. Gallagher, I., Higaki, M., Maekawa, Y.: On stationary two-dimensional flows around a fast rotating disk. Math. Nachr. 292(2), 273–308 (2019)

    Article  MathSciNet  MATH  Google Scholar 

  19. Grenier, E., Nguyen, T., Rousset, F., Soffer, A.: Linear inviscid damping and enhanced viscous dissipation of shear flows by using the conjugate operator method. J. Funct. Anal. 278(3), 108339 (2020)

    Article  MathSciNet  MATH  Google Scholar 

  20. Grenier, E., Guo, Y., Nguyen, T.: Spectral instability of characteristic boundary layer flows. Duke Math. J. 165(16), 3085–3146 (2016)

    Article  MathSciNet  MATH  Google Scholar 

  21. Grenier, E., Guo, Y., Nguyen, T.: Spectral instability of general symmetric shear flows in a two dimensional channel. Adv. Math. 292, 52–110 (2016)

    Article  MathSciNet  MATH  Google Scholar 

  22. Helffer, B., Sjöstrand, J.: From resolvent bounds to semigroup bounds. arXiv:1001.4171 (2010)

  23. Helffer, B., Sjöstrand, J.: Improving semigroup bounds with resolvent estimates. Integr. Equ. Oper. Theory 93, 36 (2021). https://doi.org/10.1007/s00020-021-02652-6

    Article  MathSciNet  MATH  Google Scholar 

  24. Ionescu, A., Jia, H.: Nonlinear inviscid damping near monotonic shear flows. Acta Math. see also arXiv:2001.03087(to appear)

  25. Ionescu, A., Jia, H.: Inviscid damping near the Couette flow in a channel. Commun. Math. Phys. 374(3), 2015–2096 (2020)

    Article  MathSciNet  MATH  ADS  Google Scholar 

  26. Ionescu, A., Jia, H.: Axi-symmetrization near point vortex solutions for the 2D Euler equation. CPAM 75(4), 818–891 (2022)

    MathSciNet  MATH  Google Scholar 

  27. Ionescu, A., Jia, H.: Linear vortex symmetrization: the spectral density function. Arch. Ration. Mech. Anal. 246(1), 61–137 (2022)

    Article  MathSciNet  MATH  Google Scholar 

  28. Ionescu, A., Jia, H.: On the nonlinear stability of shear flows and vortices. Proc. ICM (2022) (to appear)

  29. Jia, H.: Linear inviscid damping near monotone shear flows. SIAM J. Math. Anal. 52(1), 623–652 (2020)

    Article  MathSciNet  MATH  Google Scholar 

  30. Jia, H.: Linear inviscid damping in Gevrey spaces. Arch. Ration. Mech. Anal. 235(2), 1327–1355 (2020)

    Article  MathSciNet  MATH  Google Scholar 

  31. Kelvin, L.: Stability of fluid motion-rectilinear motion of viscous fluid between two plates. Philos. Mag. 24, 188 (1887)

    Article  Google Scholar 

  32. Li, T., Wei, D., Zhang, Z.: Pseudospectral bound and transition threshold for the 3D Kolmogorov flow. Commun. Pure Appl. Math. 73(3), 465–557 (2020)

    Article  MathSciNet  MATH  Google Scholar 

  33. Lin, Z., Xu, M.: Metastability of Kolmogorov flows and inviscid damping of shear flows. Arch. Ration. Mech. Anal. 231, 1811–1852 (2019)

    Article  MathSciNet  MATH  Google Scholar 

  34. Liu, X., Zeng, C.: Capillary gravity water waves linearized at monotone shear flows: eigenvalues and inviscid damping. Preprint (2021) arXiv:2110.12604

  35. Masmoudi, N., Zhao, W.: Stability threshold of the 2D Couette flow in Sobolev spaces. Ann. Inst. H. Poincaré Anal. Non Linéaire 39(2), 245–325 (2022)

    Article  MathSciNet  MATH  ADS  Google Scholar 

  36. Masmoudi, N., Zhao, W.: Enhanced dissipation for the 2D Couette flow in critical space. Commun. Partial Differ. Equ. 45(12), 1682–1701 (2020)

    Article  MathSciNet  MATH  Google Scholar 

  37. Masmoudi, N., Zhao, W.: Nonlinear inviscid damping for a class of monotone shear flows in finite channel. Preprint (2020). arXiv:2001.08564

  38. Orr, W.: The stability or instability of steady motions of a perfect liquid and of a viscous liquid, Part I: a perfect liquid. Proc. R. Ir. Acad. A Math. Phys. Sci. 27, 9–68 (1907)

    Google Scholar 

  39. Rayleigh, L.: On the stability or instability of certain fluid motions. Proc. Lond. Math. Soc. S1–11, 57 (1880)

    MathSciNet  MATH  Google Scholar 

  40. Stepin, S.: Nonself-adjoint Friedrichs Model in Hydrodynamic Stability, Functional analysis and its applications, 29(2) (1995). Translated from Funktsionaltnyi Analiz i Ego Prilozheniya, Vol. 29, No. 2, pp. 22–35, April–June, 1995. Original article submitted August 3, 1994

  41. Wang, Y., Xie, C.: Uniform structural stability of Hagen–Poiseuille flows in a pipe. Commun. Math. Phys. 393, 1347–1410 (2022). https://doi.org/10.1007/s00220-022-04389-8

    Article  MathSciNet  MATH  ADS  Google Scholar 

  42. Wei, D., Zhang, Z., Zhao, W.: Linear inviscid damping for a class of monotone shear flow in Sobolev spaces. Commun. Pure Appl. Math. 71, 617–687 (2018)

    Article  MathSciNet  MATH  Google Scholar 

  43. Wei, D., Zhang, Z., Zhao, W.: Linear inviscid damping and vorticity depletion for shear flows. Ann. PDE 5(3) (2019), see also arXiv:1704.00428

  44. Wei, D.: Diffusion and mixing in fluid flow via the resolvent estimate. Sci. China Math. 64, 507–518 (2021)

    Article  MathSciNet  MATH  Google Scholar 

  45. Wei, D., Zhang, Z., Zhao, W.: Linear inviscid damping and enhanced dissipation for the Kolmogorov flow. Adv. Math. 362, 106963 (2020)

    Article  MathSciNet  MATH  Google Scholar 

  46. Wei, D., Zhang, Z.: Transition threshold for the 3D Couette flow in Sobolev space. Commun. Pure Appl. Math. 74(11), 2398–2479 (2021)

    Article  MathSciNet  MATH  Google Scholar 

  47. Zillinger, C.: Linear inviscid damping for monotone shear flows. Trans. Am. Math. Soc. 369, 8799–8855 (2017)

    Article  MathSciNet  MATH  Google Scholar 

  48. Zillinger, C.: Linear inviscid damping for monotone shear flows in a finite periodic channel, boundary effects, blow-up and critical Sobolev regularity. Arch. Ration. Mech. Anal. 221, 1449–1509 (2016)

    Article  MathSciNet  MATH  Google Scholar 

Download references

Acknowledgements

We are grateful to Alexandru Ionescu for invaluable discussions during the project. We also thank Bernard Helffer for comments which improved the presentation of the paper.

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Hao Jia.

Ethics declarations

Conflicts of interest

The author has no conflicts of interest to declare that are relevant to the content of this article.

Additional information

Communicated by G. Seregin.

Publisher's Note

Springer Nature remains neutral with regard to jurisdictional claims in published maps and institutional affiliations.

Supported in part by NSF Grant DMS-1945179. This article is part of the Topical collection Ladyzhenskaya Centennial Anniversary edited by Gregory Seregin, Konstantinas Pileckas and Lev Kapitanski.

Rights and permissions

Springer Nature or its licensor (e.g. a society or other partner) holds exclusive rights to this article under a publishing agreement with the author(s) or other rightsholder(s); author self-archiving of the accepted manuscript version of this article is solely governed by the terms of such publishing agreement and applicable law.

Reprints and permissions

About this article

Check for updates. Verify currency and authenticity via CrossMark

Cite this article

Jia, H. Uniform Linear Inviscid Damping and Enhanced Dissipation Near Monotonic Shear Flows in High Reynolds Number Regime (I): The Whole Space Case. J. Math. Fluid Mech. 25, 42 (2023). https://doi.org/10.1007/s00021-023-00794-8

Download citation

  • Accepted:

  • Published:

  • DOI: https://doi.org/10.1007/s00021-023-00794-8

Navigation