Skip to main content
Log in

A Thermal Fluid–Structure Interaction Problem: Modeling, Variational and Numerical Analysis

  • Published:
Journal of Mathematical Fluid Mechanics Aims and scope Submit manuscript

Abstract

This article presents a variational and numerical analysis for a thermal fluid–elastic structure interaction problem related to the blood flow through a vessel. We prove the existence and the uniqueness of the weak solution to the mathematical model associated with this physical problem and we establish some estimates that give the regularity for the unknown functions. Since the variational problem introduced in order to obtain these results does not provide enough regularity in the elastic domain, we approximate it with a family of viscoelastic problems, depending on a small parameter \(\varepsilon \). The viscoelastic problems contain an additional term that corresponds to the regularity “uncovered” by the initial variational problem. This approximation is justified by an error estimate theorem, followed by a convergence result. We associate to any viscoelastic problem a numerical scheme. The additional viscoelastic term allows us to establish suitable estimates for the solution to the numerical scheme, used for obtaining stability properties. Relying on these properties, we prove the convergence of the numerical scheme to the viscoelastic problem.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Fig. 1

Similar content being viewed by others

Availability of data and materials

Not applicable.

Code Availability

Not applicable.

References

  1. Grandmont, C., Vergnet, F.: Existence for a quasi-static interaction problem between a viscous fluid and an active structure. J. Math. Fluid Mech. 23, 45 (2021). https://doi.org/10.1007/s00021-020-00552-0

    Article  ADS  MathSciNet  MATH  Google Scholar 

  2. Bociu, L., Čanić, S., Muha, B., Webster, J.T.: Multilayered poroelasticity interacting with stokes flow. SIAM J. Math. Anal. 53, 6243–6279 (2021). https://doi.org/10.1137/20M1382520

    Article  MathSciNet  MATH  Google Scholar 

  3. Panasenko, G.P., Stavre, R.: Viscous fluid-thin elastic plate interaction: asymptotic analysis with respect to the rigidity and density of the plate. Appl. Math. Optim. 81, 141–194 (2020). https://doi.org/10.1007/s00245-018-9480-2

    Article  MathSciNet  MATH  Google Scholar 

  4. Panasenko, G.P., Stavre, R.: Three dimensional asymptotic analysis of an axisymmetric flow in a thin tube with thin stiff elastic wall. J. Math. Fluid Mech. 22, 20 (2020). https://doi.org/10.1007/s00021-020-0484-8

    Article  ADS  MathSciNet  MATH  Google Scholar 

  5. Stavre, R.: Optimization of the blood pressure with the control in coefficients. Evol. Equ. Control Theory 9, 131–151 (2020). https://doi.org/10.3934/eect.2020019

    Article  MathSciNet  MATH  Google Scholar 

  6. Stavre, R.: A boundary control problem for the blood flow in venous insufficiency. The general case. Nonlinear Anal. Real World Appl. 29, 98–116 (2016). https://doi.org/10.1016/j.nonrwa.2015.11.003

    Article  MathSciNet  MATH  Google Scholar 

  7. Crosetto, P., Reymond, P., Deparis, S., Kontaxakis, D., Stergiopulos, N., Quarteroni, A.: Fluid–structure interaction simulation of aortic blood flow. Comput Fluids 43, 46–57 (2011). https://doi.org/10.1016/j.compfluid.2010.11.032

    Article  MathSciNet  Google Scholar 

  8. Deparis, S., Discacciati, M., Fourestey, G., Quarteroni, A.: Fluid–structure algorithms based on Steklov–Poincaré operators. Comput. Meth. Appl. Mech. Engng 195(41–43), 5797–5812 (2006). https://doi.org/10.1016/j.cma.2005.09.029

    Article  ADS  MATH  Google Scholar 

  9. Richter, T.: Fluid-structure Interactions, Models, Analysis and Finite Elements. In: Barth, T.J., Griebel, M., Keyes, D.E., Nieminen, R.M., Roose, D., Schlick, T. (eds.) Lecture Notes in Computational Science and Engineering, vol. 118. Springer, New York (2017). https://doi.org/10.1007/978-3-319-63970-3

    Chapter  Google Scholar 

  10. Xu, D., Zhang, Y., Wang, B., Yang, H., Ban, J., Liu, F., Li, T.: Acute effects of temperature exposure on blood pressure: An hourly level panel study. Environ. Int. 124, 493–500 (2019). https://doi.org/10.1016/j.envint.2019.01.045

    Article  Google Scholar 

  11. Kunutsor, S.K., Powles, J.W.: The effect of ambient temperature on blood pressure in a rural West African adult population: a cross-sectional study. Cardiovasc. J. Africa 21, 17–20 (2010)

    Google Scholar 

  12. Juodagalvyte, R., Panasenko, G., Pileckas, K.: Steady-state Navier–Stokes equations in thin tube structure with the bernoulli pressure inflow boundary conditions: asymptotic analysis. Mathematics 9, 2433 (2021). https://doi.org/10.3390/math9192433

    Article  Google Scholar 

  13. Bertoglio, C., Nolte, D., Panasenko, G., Pileckas, K.: Reconstruction of the pressure in the method of asymptotic partial decomposition for the flows in tube structures. SIAM J. Appl. Math. 81, 2083–2110 (2021). https://doi.org/10.1137/20M1388462

    Article  MathSciNet  MATH  Google Scholar 

  14. Bodnár, T., Galdi, G.P.: Nečesovà, Š: fluid–structure interaction and biomedical applications. Birkhäuser Basel (2014). https://doi.org/10.1007/978-3-0348-0822-4

    Article  MATH  Google Scholar 

  15. Beneš, M., Pažanin, I.: Effective flow of incompressible micropolar fluid through a system of thin pipes. Acta Appl. Math. 143, 29–43 (2016). https://doi.org/10.1007/s10440-015-0026-1

    Article  MathSciNet  MATH  Google Scholar 

  16. Panasenko, G., Stavre, R.: Asymptotic analysis of the Stokes flow with variable viscosity in a thin elastic channel. Netw. Heterog. Media 5, 783–812 (2010). https://doi.org/10.3934/nhm.2010.5.783

    Article  MathSciNet  MATH  Google Scholar 

  17. Feppon, F., Allaire, G., Bordeu, F., Cortial, J., Dapegny, C.: Shape optimization of a coupled thermal fluid-structure problem in a level set mesh evolution framework. Boletin de la Sociedad Española de Matematica Aplicada, Springer 76, 413–458 (2019). https://doi.org/10.1007/s40324-018-00185-4

  18. Mácha, V., Muha, B., Šárka Nečasová, Š, Roy, A., Trifunović, S.: Existence of a weak solution to a nonlinear fluid–structure interaction problem with heat exchange. Commun. Partial Diff. Equ. (2022). https://doi.org/10.1080/03605302.2022.2068425

    Article  MathSciNet  MATH  Google Scholar 

  19. Maity, D., Takahashi, T.: Existence and uniqueness of strong solutions for the system of interaction between a compressible Navier–Stokes-Fourier fluid and a damped plate equation. Nonlinear Anal. Real World Appl. 59, 103267 (2021). https://doi.org/10.1016/j.nonrwa.2020.103267

    Article  MathSciNet  MATH  Google Scholar 

  20. Landau, L.D., Lifshitz, E.M.: Theory of Elasticity. Pergamon Press, New York (1970)

    MATH  Google Scholar 

  21. Temam, R.: Navier–Stokes equations, North-Holland (1984)

  22. Glowinski, R.: Numerical Methods for Nonlinear Variational Problems. Springer, New York (2008)

    MATH  Google Scholar 

Download references

Funding

Not applicable.

Author information

Authors and Affiliations

Authors

Contributions

the two authors contributed equally to this work.

Corresponding author

Correspondence to Ruxandra Stavre.

Ethics declarations

Conflict of interest

The authors declare that they have no conflict of interest.

Ethics approval

Not applicable.

Consent to participate

Not applicable.

Consent for publication

Not applicable.

Additional information

Communicated by K. Pileckas.

Publisher's Note

Springer Nature remains neutral with regard to jurisdictional claims in published maps and institutional affiliations.

Rights and permissions

Springer Nature or its licensor (e.g. a society or other partner) holds exclusive rights to this article under a publishing agreement with the author(s) or other rightsholder(s); author self-archiving of the accepted manuscript version of this article is solely governed by the terms of such publishing agreement and applicable law.

Reprints and permissions

About this article

Check for updates. Verify currency and authenticity via CrossMark

Cite this article

Ciorogar, A., Stavre, R. A Thermal Fluid–Structure Interaction Problem: Modeling, Variational and Numerical Analysis. J. Math. Fluid Mech. 25, 37 (2023). https://doi.org/10.1007/s00021-023-00783-x

Download citation

  • Accepted:

  • Published:

  • DOI: https://doi.org/10.1007/s00021-023-00783-x

Keywords

Mathematics Subject Classification

Navigation