Skip to main content
Log in

On Evolution of Corner-Like gSQG Patches

  • Published:
Journal of Mathematical Fluid Mechanics Aims and scope Submit manuscript

Abstract

We study the evolution of corner-like patch solutions to the generalized SQG equations. Depending on the angle size and order of the velocity kernel, the corner instantaneously bends either downward or upward. In particular, we obtain a new proof of the existence of strictly convex and smooth patch solutions which become immediately non-convex.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Fig. 1
Fig. 2
Fig. 3

Similar content being viewed by others

Data Availability

Data sharing not applicable to this article as no datasets were generated or analyzed during the current study.

References

  1. Bertozzi, A.L., Constantin, P.: Global regularity for vortex patches. Commun. Math. Phys. 152(1), 19–28 (1993)

    Article  ADS  MathSciNet  MATH  Google Scholar 

  2. Carrillo, J.A., Soler, J.: On the evolution of an angle in a vortex patch. J. Nonlinear Sci. 10(1), 23–47 (2000)

    Article  ADS  MathSciNet  MATH  Google Scholar 

  3. Castro, A., Córdoba, D., Gómez-Serrano, J., Zamora, A.M.: Remarks on geometric properties of SQG sharp fronts and \(\alpha \)-patches. Discrete Contin. Dyn. Syst. 34(12), 5045–5059 (2014)

    Article  MathSciNet  MATH  Google Scholar 

  4. Chae, D., Constantin, P., Córdoba, D., Gancedo, F., Wu, J.: Generalized surface quasi-geostrophic equations with singular velocities. Commun. Pure Appl. Math. 65(8), 1037–1066 (2012)

    Article  MathSciNet  MATH  Google Scholar 

  5. Chemin, J.-Y.: Persistance de structures géométriques dans les fluides incompressibles bidimensionnels. Ann. Sci. École Norm. Sup. (4) 26(4), 517–542 (1993)

    Article  MathSciNet  MATH  Google Scholar 

  6. Choi, K., Jeong, I.-J.: Growth of perimeter for vortex patches in a bulk. Appl. Math. Lett. 113, Paper No. 106857, 9 (2021)

  7. Choi, K., Jeong, I.-J.: Infinite growth in vorticity gradient of compactly supported planar vorticity near Lamb dipole. Nonlinear Anal. Real World Appl. 65, Paper No. 103470, 20 (2022)

  8. Córdoba, A., Córdoba, D., Gancedo, F.: Uniqueness for SQG patch solutions. Trans. Am. Math. Soc. Ser. B 5, 1–31 (2018)

    Article  MathSciNet  MATH  Google Scholar 

  9. de la Hoz, F., Hassainia, Z., Hmidi, T., Mateu, J.: An analytical and numerical study of steady patches in the disc. Anal. PDE 9(7), 1609–1670 (2016)

    Article  MathSciNet  MATH  Google Scholar 

  10. Dritschel, D.G., McIntyre, M.E.: Does contour dynamics go singular? Phys. Fluids A 2(5), 748–753 (1990)

    Article  ADS  MathSciNet  Google Scholar 

  11. Dritschel, D.G.: Contour surgery: a topological reconnection scheme for extended integrations using contour dynamics. J. Comput. Phys. 77(1), 240–266 (1988)

    Article  ADS  MathSciNet  MATH  Google Scholar 

  12. Elgindi, T.M., Jeong, I.-J.: On singular vortex patches, I: well-posedness issues. Mem. AMS (to appear)arXiv:1903.00833

  13. Elgindi, T., Jeong, I.J.: On singular vortex patches, II: long-time dynamics. Trans. Am. Math. Soc. 373(9), 6757–6775 (2020)

    Article  MathSciNet  MATH  Google Scholar 

  14. Gancedo, F.: Existence for the \(\alpha \)-patch model and the QG sharp front in Sobolev spaces. Adv. Math. 217(6), 2569–2598 (2008)

    Article  MathSciNet  MATH  Google Scholar 

  15. Gancedo, F., Nguyen, H.Q., Patel, N.: Well-posedness for sqg sharp fronts with unbounded curvature. Math. Models Methods Appl. Sci. 32(13), 2551–2599 (2022). https://doi.org/10.1142/S0218202522500610

  16. Gancedo, F., Patel, N.: On the local existence and blow-up for generalized SQG patches. Ann. PDE 7(1), Paper No. 4, 63 (2021)

  17. Garcìa, C., Gómez-Serrano, J.: Self-similar spirals for the generalized surface quasi-geostrophic equations. arXiv:2207.12363

  18. Hassainia, Z., Masmoudi, N., Wheeler, M.H.: Global bifurcation of rotating vortex patches. Commun. Pure Appl. Math. 73(9), 1933–1980 (2020)

    Article  MathSciNet  MATH  Google Scholar 

  19. Kiselev, A., Li, C.: Global regularity and fast small-scale formation for Euler patch equation in a smooth domain. Commun. Partial Differ. Equ. 44(4), 279–308 (2019)

    Article  MathSciNet  MATH  Google Scholar 

  20. Kiselev, A., Luo, X.: Illposedness of \({C}^{2}\) vortex patches. arXiv:2204.06416

  21. Kiselev, A., Ryzhik, L., Yao, Y., Zlatoš, A.: Finite time singularity for the modified SQG patch equation. Ann. Math. (2) 184(3), 909–948 (2016)

    Article  MathSciNet  MATH  Google Scholar 

  22. Kiselev, A., Yao, Y., Zlatoš, A.: Local regularity for the modified SQG patch equation. Commun. Pure Appl. Math. 70(7), 1253–1315 (2017)

    Article  MathSciNet  MATH  Google Scholar 

  23. Overman, E.A., II.: Steady-state solutions of the Euler equations in two dimensions. II. Local analysis of limiting \(V\)-states. SIAM J. Appl. Math. 46(5), 765–800 (1986)

    Article  ADS  MathSciNet  MATH  Google Scholar 

  24. Scott, R.K., Dritschel, D.G.: Scale-invariant singularity of the surface quasigeostrophic patch. J. Fluid Mech. 863, R2 (2019)

    Article  ADS  MathSciNet  MATH  Google Scholar 

  25. Scott, R.K.: A scenario for finite-time singularity in the quasigeostrophic model. J. Fluid Mech. 687, 492–502 (2011)

    Article  ADS  MATH  Google Scholar 

  26. Serfati, P.: Une preuve directe d’existence globale des vortex patches \(2\)D. C. R. Acad. Sci. Paris Sér. I Math. 318(6), 515–518 (1994)

    MathSciNet  MATH  Google Scholar 

  27. Wu, H.M., Overman, E.A., II., Zabusky, N.J.: Steady-state solutions of the Euler equations in two dimensions: rotating and translating \(V\)-states with limiting cases. I. Numerical algorithms and results. J. Comput. Phys. 53(1), 42–71 (1984)

    Article  ADS  MathSciNet  MATH  Google Scholar 

  28. Yudovich, V.I.: Non-stationary flows of an ideal incompressible fluid. Z. Vycisl. Mat. i Mat. Fiz. 3, 1032–1066 (1963)

    MathSciNet  Google Scholar 

  29. Zou, Q., Overman, E.A., Wu, H.M., Zabusky, N.J.: Contour dynamics for the Euler equations: curvature controlled initial node placement and accuracy. J. Comput. Phys. 78, 350–368 (1988)

    Article  ADS  MATH  Google Scholar 

Download references

Acknowledgements

JJ has been supported by NSF Grant DMS-1900943. IJ has been supported by the Samsung Science and Technology Foundation under Project Number SSTF-BA2002-04.

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to In-Jee Jeong.

Ethics declarations

Conflict of interest

The authors have no conflicts of interest to disclose.

Additional information

Communicated by R. Shvydkoy.

Publisher's Note

Springer Nature remains neutral with regard to jurisdictional claims in published maps and institutional affiliations.

Rights and permissions

Springer Nature or its licensor (e.g. a society or other partner) holds exclusive rights to this article under a publishing agreement with the author(s) or other rightsholder(s); author self-archiving of the accepted manuscript version of this article is solely governed by the terms of such publishing agreement and applicable law.

Reprints and permissions

About this article

Check for updates. Verify currency and authenticity via CrossMark

Cite this article

Jeon, J., Jeong, IJ. On Evolution of Corner-Like gSQG Patches. J. Math. Fluid Mech. 25, 35 (2023). https://doi.org/10.1007/s00021-023-00774-y

Download citation

  • Accepted:

  • Published:

  • DOI: https://doi.org/10.1007/s00021-023-00774-y

Mathematics Subject Classification

Navigation