Skip to main content
Log in

An Inverse Problem for Determining the Shape of the Wedge in Steady Supersonic Potential Flow

  • Published:
Journal of Mathematical Fluid Mechanics Aims and scope Submit manuscript

Abstract

This paper studies a problem of determining the shape of wedge in the planar steady supersonic potential flow. Assume that the pressure on the wedge is given with a small total variation and is close to the constant pressure of incoming flow, we use the Glimm scheme to construct approximate boundaries and corresponding approximate solutions and prove that approximate boundaries and the corresponding solutions have convergent subsequences. Then both the boundary of wedge and the corresponding global weak solution can be determined.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Fig. 1
Fig. 2
Fig. 3
Fig. 4
Fig. 5

Similar content being viewed by others

Availability of data and materials

Not applicable.

References

  1. Abbott, I.H., von Doenhoff, A.E.: Theory of Wing Sections-Including a Summary of Airfoil Data. Dover Publications, New York (1959)

    Google Scholar 

  2. Abzalilov, D.F.: Minimization of the wing airfoil drag coefficient using the optimal control method. Fluid Dyn. 40(6), 985–991 (2005)

    Article  ADS  MathSciNet  MATH  Google Scholar 

  3. Bressan, A.: Hyperbolic systems of conservation laws: the one-dimensional Cauchy problem. Oxford University Press Inc., New York (2000)

    MATH  Google Scholar 

  4. Caramia, G., Dadone, A.: A general use adjoint formulation for compressible and incompressible inviscid fluid dynamic optimization. Comput. Fluids 179, 289–300 (2019)

    Article  MathSciNet  MATH  Google Scholar 

  5. Chen, G., Kuang, J., Zhang, Y.: Stability of conical shocks in the three-dimensional steady supersonic isothermal flow past Lipschitz perturbed cones. SIAM J. Math. Anal. 53(3), 2811–2862 (2021)

    Article  MathSciNet  MATH  Google Scholar 

  6. Chen, G., Zhang, Y., Zhu, D.: Existence and stability of supersonic Euler flows past Lipschitz wedge. Arch. Rational Mech. Anal. 181(2), 261–310 (2006)

    Article  ADS  MathSciNet  MATH  Google Scholar 

  7. Chen, S.: Global existence of supersonic flow past a curved convex wedge. J. Partial Diff. Eqs. 11, 73–62 (1998)

    MathSciNet  MATH  Google Scholar 

  8. Courant, R., Friedrichs, K.O.: Supersonic Flow and Shock Waves. Interscience Publishers Inc., New York (1948)

    MATH  Google Scholar 

  9. Cui, D., Yin, H.: Global supersonic conic shock wave for the steady supersonic flow past a cone: isothermal case. Pacific J. Math. 233, 257–289 (2007)

    Article  MathSciNet  MATH  Google Scholar 

  10. Dafermos, C.M.: Hyperbolic Conservation laws in Continuum Physics. Springer-Verlag, Berlin (2000)

    Book  MATH  Google Scholar 

  11. Fang, B.: Stability of transonic shocks for the full Euler system in supersonic flow past a wedge. Math. Methods Appl. Sci. 29(1), 1–26 (2006)

    Article  ADS  MathSciNet  MATH  Google Scholar 

  12. Glimm, J.: Solutions in the large for nonlinear hyperbolic systems of equations. Comm. Pure Appl. Math. 18, 95–105 (1965)

    Article  MathSciNet  MATH  Google Scholar 

  13. Glimm, J., Lax, P. D.: Decay of solutions of systems of nonlinear hyperbolic conservation laws. Mem. Amer. Math. Soc. 101, (1970)

  14. Goldsworthy, F.A.: Supersonic flow over thin symmetrical wings with given surface pressure distribution. Aeronaut. Quart. 3, 263–279 (1952)

    Article  MathSciNet  Google Scholar 

  15. Golubkin, V.N., Negoda, V.V.: Calculation of the hypersonic flow over the upwind side of a wing of small span at high angles of attack. U.S.S.R. Comput. Math. Math. Phys. 28(5), 202–208 (1988)

    Article  MathSciNet  MATH  Google Scholar 

  16. Golubkin, V.N., Negoda, V.V.: Optimization of hypersonic wings. Comput. Math. Math. Phys. 34(3), 377–388 (1994)

    MathSciNet  MATH  Google Scholar 

  17. Gu, C.: A method for solving the supersonic flow past a curved wedge. Fudan J. (Natur. Sci.) 7, 11–14 (1962)

    Google Scholar 

  18. Ilyushkin, V.M., Tumashev, G.G.: An inverse problem of the theory of a thin wing in a supersonic flow. Trudy Sem. Kraev Zadachan 20, 129–135 (1983)

    MathSciNet  MATH  Google Scholar 

  19. Lax, P.D.: Hyperbolic systems of conservation laws II. Comm. Pure Appl. Math. 10, 537–566 (1957)

    Article  MathSciNet  MATH  Google Scholar 

  20. Li, T.: On a free boundary problem. Chin. Ann. Math. 1, 351–358 (1980)

    ADS  MATH  Google Scholar 

  21. Li, T., Wang, L.: Global exact shock reconstruction for quasilinear hyperbolic systems of conservation laws. Discrete Contin. Dyn. Syst. 15, 597–609 (2006)

    Article  MathSciNet  Google Scholar 

  22. Li, T., Wang, L.: Existence and uniqueness of global solution to inverse piston problem. Inverse Probl. 23, 683–694 (2007)

    Article  ADS  MathSciNet  MATH  Google Scholar 

  23. Li, T., Wang, L.: Inverse piston problem for the system of one-dimensional isentropic flow. Chin. Annals Math. 288, 265–282 (2007)

    Article  MathSciNet  MATH  Google Scholar 

  24. Li, T., Wang, L.: Global Propagation of Regular Nonlinear Hyperbolic Waves. Progress in Nonlinear Differential Equations and Their Applications, Birkauser/Springer, Basel/Berlin (2009)

    MATH  Google Scholar 

  25. Li, T.: An inverse problem in hypersonic viscous flow. Proceeding of Fifth Midwestern Conference on Fluid Mechanics, 1957, pp. 201-223. University of Michigan Press, Ann Arbor, Mich. (1957)

  26. Liu, T.P.: Decay to N-waves of solution of General systems of nonlinear hyperbolic conservation laws. Comm. Pure Appl. Math. 30(2), 586–611 (1977)

    MathSciNet  Google Scholar 

  27. Maddalena, F., Mainini, E., Percivale, D.: Euler’s optimal profile problem. Calc. Var. Partial Differ. Equ. 59(2), 1–33 (2020)

    Article  MathSciNet  MATH  Google Scholar 

  28. Mohammadi, B., Pironneau, O.: Applied Shape Optimization for Fluids. Numerical Mathematics and Scientific Computation. Oxford University Press, Oxford (2001)

    MATH  Google Scholar 

  29. Nishida, T., Smoller, J.: Solution in large for some nonlinear hyperbolic conservation laws. Comm. Pure Appl. Math. 26, 183–200 (1973)

    Article  MathSciNet  MATH  Google Scholar 

  30. Robinson, A., Laurmann, J.A.: Wing Theory. Cambridge University Press, Cambridge (1956)

    MATH  Google Scholar 

  31. Schaffer, D.G.: Supersonic flow past a nearly straight wedge. Duke Math. J. 43, 637–870 (1976)

    MathSciNet  MATH  Google Scholar 

  32. Serre, D.: Systems of Conservation Laws. I & II. Cambridge University Press, Cambridge (1999)

    Book  MATH  Google Scholar 

  33. Smoller, J.: Shock Waves and Reaction-Diffusion Equations. Springer-Verlag, New York (1983)

    Book  MATH  Google Scholar 

  34. Vorobev, N.F.: Inverse problem of wing aerodynamics in a supersonic flow. J. Appl. Mech. Tech. Phys. 39(3), 399–403 (1998)

    Article  ADS  MathSciNet  Google Scholar 

  35. Wang, L.: Direct problem and inverse problem for the supersonic plane flow past a curved wedge. Math. Meth. Appl. Sci. 24, 2291–2302 (2011)

    Article  ADS  MathSciNet  MATH  Google Scholar 

  36. Wang, L., Wang, Y.: An inverse piston problem with small BV initial data. Acta Appl. Math. 160, 35–52 (2019)

    Article  MathSciNet  MATH  Google Scholar 

  37. Zhang, Y.: Global existence of steady supersonic potential flow past a curved wedge with a piecewise smooth boundary. SIAM J. Math. Anal. 31, 166–183 (1999)

    Article  MathSciNet  MATH  Google Scholar 

  38. Zhang, Y.: Steady supersonic flow past an almost straight wedge with large vertex angle. J. Differ. Eqs. 192(1), 1–46 (2003)

    Article  ADS  MathSciNet  MATH  Google Scholar 

Download references

Acknowledgements

The authors are grateful to the anonymous referees for useful comments and suggestions.

Funding

Not applicable.

Author information

Authors and Affiliations

Authors

Contributions

These authors contributed equally to this work.

Corresponding author

Correspondence to Yongqian Zhang.

Ethics declarations

Conflicts of interest

On behalf of all authors, the corresponding author states that there is no conflict of interest.

Ethics approval

Not applicable.

Additional information

Communicated by G. G. Chen.

Publisher's Note

Springer Nature remains neutral with regard to jurisdictional claims in published maps and institutional affiliations.

Rights and permissions

Springer Nature or its licensor (e.g. a society or other partner) holds exclusive rights to this article under a publishing agreement with the author(s) or other rightsholder(s); author self-archiving of the accepted manuscript version of this article is solely governed by the terms of such publishing agreement and applicable law.

Reprints and permissions

About this article

Check for updates. Verify currency and authenticity via CrossMark

Cite this article

Pu, Y., Zhang, Y. An Inverse Problem for Determining the Shape of the Wedge in Steady Supersonic Potential Flow. J. Math. Fluid Mech. 25, 25 (2023). https://doi.org/10.1007/s00021-023-00768-w

Download citation

  • Accepted:

  • Published:

  • DOI: https://doi.org/10.1007/s00021-023-00768-w

Keywords

Mathematics Subject Classification

Navigation