Skip to main content
Log in

Liouville Type Theorems for the Planar Stationary MHD Equations with Growth at Infinity

  • Published:
Journal of Mathematical Fluid Mechanics Aims and scope Submit manuscript

Abstract

For the two dimensional steady MHD equations, we prove that Liouville type theorems hold if the velocity is growing fast at infinity. The main obstacle comes from the nonlinear terms, since the vorticity system of the MHD equations has no maximum principle unlike the Navier–Stokes equations. As a corollary, we obtain that all solutions of the 2D Navier–Stokes equations satisfying \(\nabla u\in L^p({\mathbb {R}}^2)\) with \(1<p<\infty \) are constants, which is sharp since there exist some non-trivial linear solutions like the Couette flow in the sense of \(\nabla u\in L^\infty ({\mathbb {R}}^2)\).

This is a preview of subscription content, log in via an institution to check access.

Access this article

Subscribe and save

Springer+ Basic
$34.99 /Month
  • Get 10 units per month
  • Download Article/Chapter or eBook
  • 1 Unit = 1 Article or 1 Chapter
  • Cancel anytime
Subscribe now

Buy Now

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Similar content being viewed by others

References

  1. Bildhauer, M., Fuchs, M., Zhang, G.: Liouville-type theorems for steady flows of degenerate power law fluids in the plane. J. Math. Fluid Mech. 15(3), 583–616 (2013)

    Article  ADS  MathSciNet  Google Scholar 

  2. Bogovski, M.E.: Decomposition of \(L_p(\Omega; R^n)\) into the direct sum of subspaces of solenoidal and potential vector fields. Soviet Math. Dokl. 33, 161–165 (1986)

    Google Scholar 

  3. Decaster, A., Iftimie, D.: On the asymptotic behaviour of 2D stationary Navier–Stokes solutions with symmetry conditions. Nonlinearity 30(10), 3951–3978 (2017)

    Article  ADS  MathSciNet  Google Scholar 

  4. Fuchs, M.: Stationary flows of shear thickening fluids in 2D. J. Math. Fluid Mech. 14(1), 43–54 (2012)

    Article  ADS  MathSciNet  Google Scholar 

  5. Fuchs, M.: Liouville theorems for stationary flows of shear thickening fluids in the plane. J. Math. Fluid Mech. 14(3), 421–444 (2012)

    Article  ADS  MathSciNet  Google Scholar 

  6. Fuchs, M., Zhang, G.: Liouville theorems for entire local minimizers of energies defined on the class LlogL and for entire solutions of the stationary Prandtl-Eyring fluid model. Calc. Var. Partial Differ. Equ. 44(1–2), 271–295 (2012)

    Article  Google Scholar 

  7. Fuchs, M., Zhong, X.: A note on a Liouville type result of Gilbarg and Weinberger for the stationary Navier-Stokes equations in 2D. Problems in mathematical analysis No. 60. J. Math. Sci. (N.Y.) 178(6), 695–703 (2011)

    Article  MathSciNet  Google Scholar 

  8. Galdi, G.P.: An Introduction to the Mathematical Theory of the Navier–Stokes Equations, 2nd edn. Steady-state problems. Springer Monographs in Mathematics. Springer, New York (2011)

  9. Galdi, Giovanni P., Grisanti, Carlo R.: Existence and regularity of steady flows for shear-thinning liquids in exterior two-dimensional. Arch. Ration. Mech. Anal. 200(2), 533–559 (2011)

    Article  MathSciNet  Google Scholar 

  10. Galdi, G.P., Novotny, A., Padula, M.: On the two-dimensional steady-state problem of a viscous gas in an exterior domain. Pac. J. Math. 179(1), 65–100 (1997)

    Article  MathSciNet  Google Scholar 

  11. Gilbarg, D., Weinberger, H.F.: Asymptotic properties of steady plane solutions of the Navier–Stokes equations with bounded Dirichlet integral. Ann. Scuola Norm. Sup. Pisa Cl. Sci. (4) 5(2), 381–404 (1978)

    MathSciNet  MATH  Google Scholar 

  12. Jin, Bum Ja, Kang, Kyungkeun: Liouville theorem for the steady-state non-Newtonian Navier–Stokes equations in two dimensions. J. Math. Fluid Mech. 16(2), 275–292 (2014)

    Article  ADS  MathSciNet  Google Scholar 

  13. Koch, G., Nadirashvili, N., Seregin, G., Sverak, V.: Liouville theorems for the Navier–Stokes equations and applications. Acta Mathematica 203, 83–105 (2009)

    Article  MathSciNet  Google Scholar 

  14. Korobkov, Mikhail, Pileckas, Konstantin: Russo, Remigio The existence of a solution with finite Dirichlet integral for the steady Navier–Stokes equations in a plane exterior symmetric domain. J. Math. Pures Appl. (9) 101(3), 257–274 (2014)

    Article  MathSciNet  Google Scholar 

  15. Pileckas, Konstantin, Russo, Remigio: On the existence of vanishing at infinity symmetric solutions to the plane stationary exterior Navier–Stokes problem. Math. Ann. 352(3), 643–658 (2012)

    Article  MathSciNet  Google Scholar 

  16. Russo, Antonio: A note on the exterior two-dimensional steady-state Navier–Stokes problem. J. Math. Fluid Mech. 11(3), 407–414 (2009)

    Article  ADS  MathSciNet  Google Scholar 

  17. Russo, Antonio: On the asymptotic behavior of D-solutions of the plane steady-state Navier–Stokes equations. Pac. J. Math. 246(1), 253–256 (2010)

    Article  MathSciNet  Google Scholar 

  18. Wang, W., Wang, Y.: Liouville-type theorems for the stationary MHD equations in 2D. Nonlinearity 32(11), 4483–4505 (2019)

    Article  ADS  MathSciNet  Google Scholar 

  19. Zhang, G.: A note on Liouville theorem for stationary flows of shear thickening fluids in the plane. J. Math. Fluid Mech. 15(4), 771–782 (2013)

    Article  ADS  MathSciNet  Google Scholar 

  20. Zhang, G.: Liouville theorems for stationary flows of shear thickening fluids in 2D. Ann. Acad. Sci. Fenn. Math. 40(2), 889–905 (2015)

    Article  MathSciNet  Google Scholar 

Download references

Acknowledgements

W. Wang was supported by NSFC under Grant 12071054, 11671067 and “the Fundamental Research Funds for the Central Universities”.

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Wendong Wang.

Ethics declarations

Conflict of interest

The author states that there is no conflict of interest.

Additional information

Communicated by G. G. Chen.

Publisher's Note

Springer Nature remains neutral with regard to jurisdictional claims in published maps and institutional affiliations.

Rights and permissions

Reprints and permissions

About this article

Check for updates. Verify currency and authenticity via CrossMark

Cite this article

Wang, W. Liouville Type Theorems for the Planar Stationary MHD Equations with Growth at Infinity. J. Math. Fluid Mech. 23, 88 (2021). https://doi.org/10.1007/s00021-021-00615-w

Download citation

  • Accepted:

  • Published:

  • DOI: https://doi.org/10.1007/s00021-021-00615-w

Keywords

Mathematics Subject Classification

Navigation