Skip to main content
Log in

Constant Vorticity Ekman Flows in the \(\beta \)-Plane Approximation

  • Published:
Journal of Mathematical Fluid Mechanics Aims and scope Submit manuscript

Abstract

In this paper, we study the classical problem of the wind in the steady atmospheric Ekman layer with constant eddy viscosity. Three dimensional Ekman flows with constant vorticity is considered in the \(\beta \)-plane approximation. It is remarkable that we explore a totally new approach, which is much different from procedure in (Martin J Fluid Mech 865:762–774, 2019; Chu and Yang J Differ Equ 269:9336–9347, 2020), to show that any Ekman flow with a flat surface and constant vorticity vector is the stationary flow with vanishing velocity field.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Fig. 1
Fig. 2

Similar content being viewed by others

References

  1. Holton, J.R.: An Introduction to Dynamic Meteorology. Academic Press, New York (2004)

    Google Scholar 

  2. Marshall, J., Plumb, R.A.: Atmosphere Ocean and Climate Dynamic: An Introduction Text. Academic Press, New York (2016)

    Google Scholar 

  3. Ekman, V.W.: On the influence of the earth’s rotation on ocean-currents. Arkiv for Matematik Astronmi Och Fysik 2, 1–52 (1905)

  4. Zdunkowski, W., Bott, A.: Dynamic of the Atmosphere. Cambridge University Press, Cambridge (2003)

    Book  Google Scholar 

  5. Haltinar, G.J., Williams, R.T.: Numercial Prediction and Dynamic Meteorology. Wiley Press, New York (1980)

    Google Scholar 

  6. Pedlosky, J.: Geophysical Fluid Dynamic. Springer-Verlag Press, New York (1987)

    Book  Google Scholar 

  7. Constantin, A., Johnson, R.S.: Atmospheric Ekman flows with variable eddy viscosity. Bound. Layer Meteorol. 170, 395–414 (2019)

    Article  ADS  Google Scholar 

  8. Bressan, A., Constantin, A.: The deflection angle of surface ocean currents from the wind direction. J. Geophys. Res. Oceans 124, 7412–7420 (2019)

    Article  ADS  Google Scholar 

  9. Constantin, A., Dritschel, D.G., Paldor, N.: The deflection angle between a wind-forced surface current and the overlying wind in an ocean with vertically varying eddy viscosity. Phys. Fluids 32, 116604 (2020)

  10. Constantin, A.: Frictional effects in wind-driven ocean currents. Geophys. Astrophys. Fluid Dyn. 115, 1–14 (2021)

    Article  ADS  MathSciNet  Google Scholar 

  11. Dritschel, D.G., Paldor, N., Constantin, A.: The Ekman spiral for piecewise-uniform diffusivity. Ocean Sci. Discuss. 16, 1089–1093 (2020)

    Article  ADS  Google Scholar 

  12. Fečkan, M., Guan, Y., O’Regan, D., Wang, J.: Existence and uniqueness and first order approximation of solutions to atmospheric Ekman flows. Monatshefte für Mathematik 193, 623–636 (2020)

  13. Constantin, A.: Two-dimensionality of gravity water flows of constant nonzero vorticity beneath a surface wave train. Eur. J. Mech. B/Fluids 30, 12–16 (2011)

    Article  ADS  MathSciNet  Google Scholar 

  14. Benoit, C.R., Beckers, J.M.: Introduction to Geophysical Fluid Dynamics: Physical and Numerical Aspects. Academic Press, New York (2011)

    MATH  Google Scholar 

  15. Constantin, A.: On the modelling of equatorial waves. Geophys. Res. Lett. 39, L05602 (2012)

    Article  ADS  Google Scholar 

  16. Gerstner, F.: Theorie der Wellen samt einer daraus abgeleiteten Theorie der Deichprofile. Ann. Phys. 2, 412–445 (1809)

    Article  Google Scholar 

  17. Constantin, A.: An exact solution for equatorially trapped waves. J. Geophys. Res. Oceans 117, C05029 (2012)

    Article  ADS  Google Scholar 

  18. Constantin, A.: Some three-dimensional nonlinear equatorial flows. J. Phys. Oceanogr. 43, 165–175 (2013)

    Article  ADS  Google Scholar 

  19. Constantin, A.: Some nonlinear, equatorially trapped, nonhydrostatic internal geophysical waves. J. Phys. Oceanogr. 44, 781–789 (2014)

    Article  ADS  Google Scholar 

  20. Chu, J.F., Ionescu, D.K., Yang, Y.J.: Exact solution and instability for geophysical waves at arbitrary latitude. Discrete Contin. Dyn. Syst. 39, 4399–4414 (2019)

    Article  MathSciNet  Google Scholar 

  21. Constantin, A., Germain, P.: Instability of some equatorially trapped waves. J. Geophys. Res. Oceans 118, 2802–2810 (2013)

    Article  ADS  Google Scholar 

  22. Henry, D.: A modified equatorial \(\beta -\)plane approximation modelling nonlinear wave–current interactions. J. Differ. Equ. 263, 2554–2566 (2017)

    Article  ADS  MathSciNet  Google Scholar 

  23. Constantin, A., Monismith, S.G.: Gerstner waves in the presence of mean currents and rotation. J. Fluid Mech. 820, 511–528 (2017)

    Article  ADS  MathSciNet  Google Scholar 

  24. Henry, D.: Exact equatorial water waves in the \(f-\)plane. Nonlinear Anal. Real World Appl. 28, 284–289 (2016)

    Article  MathSciNet  Google Scholar 

  25. Constantin, A., Johnson, R.S.: An exact, steady, purely azimuthal equatorial flow with a free surface. J. Phys. Oceanogr. 46, 1935–1945 (2016)

    Article  ADS  Google Scholar 

  26. Constantin, A., Johnson, R.S.: An exact, steady, purely azimuthal fow as a model for the Antarctic Circumpolar Current. J. Phys. Oceanogr. 46, 3585–3594 (2016)

    Article  ADS  Google Scholar 

  27. Constantin, A., Johnson, R.S.: A nonlinear, three-dimensional model for ocean flows, motivated by some observations of the pacific equatorial undercurrent and thermocline. Phys. Fluids 29, 056604 (2017)

  28. Stuhlmeier, R.: On constant vorticity fows beneath two-dimensional surface solitary waves. J. Nonlinear Math. Phys. 19, 1240004 (2012)

    Article  ADS  MathSciNet  Google Scholar 

  29. Martin, C.I.: Non-existence of time-dependent three-dimensional gravity water fows with constant non-zero vorticity. Phys. Fluids 30, 107102 (2018)

  30. Martin, C.I.: On constant vorticity water flows in the \(\beta -\)plane approximation. J. Fluid Mech. 865, 762–774 (2019)

    Article  ADS  MathSciNet  Google Scholar 

  31. Guan, Y., Fečkan, M., Wang, J.: Periodic solutions and Hyers-Ulam stability of atmospheric Ekman flows. Discrete Contin. Dyn. Syst. 41, 1157–1176 (2021)

    Article  MathSciNet  Google Scholar 

  32. Chu, J.F., Yang, Y.J.: Constant vorticity water flows in the equatorial \(\beta -\)plane approximation with centripetal forces. J. Differ. Equ. 269, 9336–9347 (2020)

    Article  ADS  MathSciNet  Google Scholar 

Download references

Acknowledgements

The authors are grateful to the referees for their careful reading of the manuscript and their valuable comments.

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to JinRong Wang.

Ethics declarations

Conflict of interest

The authors declare that they have no conflict of interest.

Additional information

Communicated by A. Constantin.

Publisher's Note

Springer Nature remains neutral with regard to jurisdictional claims in published maps and institutional affiliations.

This work is partially supported by the National Natural Science Foundation of China (11661016), Training Object of High Level and Innovative Talents of Guizhou Province ((2016)4006), Guizhou Data Driven Modeling Learning and Optimization Innovation Team ([2020]5016), Discipline and Master’s Site Construction Project of Guiyang University by Guiyang City Financial Support Guiyang University [2021-xk04], the Slovak Research and Development Agency under the contract No. APVV-18-0308, and the Slovak Grant Agency VEGA Nos. 1/0358/20 and 2/0127/20.

Rights and permissions

Reprints and permissions

About this article

Check for updates. Verify currency and authenticity via CrossMark

Cite this article

Wang, J., Fečkan, M. & Guan, Y. Constant Vorticity Ekman Flows in the \(\beta \)-Plane Approximation. J. Math. Fluid Mech. 23, 85 (2021). https://doi.org/10.1007/s00021-021-00612-z

Download citation

  • Accepted:

  • Published:

  • DOI: https://doi.org/10.1007/s00021-021-00612-z

Keywords

Navigation