Skip to main content
Log in

Mild Criticality Breaking for the Navier–Stokes Equations

  • Published:
Journal of Mathematical Fluid Mechanics Aims and scope Submit manuscript

Abstract

In this short paper we prove the global regularity of solutions to the Navier–Stokes equations under the assumption that slightly supercritical quantities are bounded. As a consequence, we prove that if a solution u to the Navier–Stokes equations blows-up, then certain slightly supercritical Orlicz norms must become unbounded. This partially answers a conjecture recently made by Terence Tao. The proof relies on quantitative regularity estimates at the critical level and transfer of subcritical information on the initial data to arbitrarily large times. This method is inspired by a recent paper of Aynur Bulut, where similar results are proved for energy supercritical nonlinear Schrödinger equations.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Similar content being viewed by others

Notes

  1. This means that there exists a universal constant \(N_{univ}\in [1,\infty )\) such that for all \(M\ge N_{univ}\) and \(E\ge N_{univ}\) we have the result.

References

  1. Albritton, D., Barker, T.: On local type I singularities of the Navier–Stokes equations and Liouville theorems. J. Math. Fluid Mech. 21(3), 1–11 (2019)

    Article  MathSciNet  Google Scholar 

  2. Barbato, D., Morandin, F., Romito, M.: Global regularity for a slightly supercritical hyperdissipative Navier–Stokes system. Anal. PDE 7(8), 2009–2027 (2015)

    Article  MathSciNet  Google Scholar 

  3. Barker, T., Prange, C.: Quantitative regularity for the Navier–Stokes equations via spatial concentration (2020). arXiv:2003.06717

  4. Beirão da Veiga, H.: Existence and asymptotic behavior for strong solutions of the Navier–Stokes equations in the whole space. Indiana Univ. Math. J. 36(1), 149–166 (1987)

    Article  MathSciNet  Google Scholar 

  5. Bjorland, C., Vasseur, A.: Weak in space, log in time improvement of the Ladyženskaja–Prodi–Serrin criteria. J. Math. Fluid Mech. 13(2), 259–269 (2011)

    Article  ADS  MathSciNet  Google Scholar 

  6. Bradshaw, Z., Tsai., T.-P.: Global existence, regularity, and uniqueness of infinite energy solutions to the Navier-Stokes equations (2019). arXiv:1907.00256

  7. Bulut, A.: Blow-up criteria below scaling for defocusing energy-supercritical NLS and quantitative global scattering bounds (2020). arXiv e-prints, page arXiv:2001.05477

  8. Chan, C.H., Vasseur, A.: Log improvement of the Prodi–Serrin criteria for Navier–Stokes equations. Methods Appl. Anal. 14(2), 197–212 (2007)

    MathSciNet  MATH  Google Scholar 

  9. Colombo, M., De Lellis, C., Massaccesi, A.: The generalized Caffarelli–Kohn–Nirenberg theorem for the hyperdissipative Navier–Stokes system. Commun. Pure Appl. Math. 73(3), 609–663 (2020)

    Article  MathSciNet  Google Scholar 

  10. Colombo, M., Haffter, S.: Global regularity for the hyperdissipative Navier–Stokes equation below the critical order (2019). arXiv:1911.02600

  11. Colombo, M., Haffter, S.: Global regularity for the nonlinear wave equation with slightly supercritical power (2019). arXiv:1911.02599

  12. Coti Zelati, M., Vicol, V.: On the global regularity for the supercritical SQG equation. Indiana Univ. Math. J. 65(2), 535–552 (2016)

    Article  MathSciNet  Google Scholar 

  13. Dabkowski, M., Kiselev, A., Silvestre, L., Vicol, V.: Global well-posedness of slightly supercritical active scalar equations. Anal. PDE 7(1), 43–72 (2014)

    Article  MathSciNet  Google Scholar 

  14. Dabkowski, M., Kiselev, A., Vicol, V.: Global well-posedness for a slightly supercritical surface quasi-geostrophic equation. Nonlinearity 25(5), 1525 (2012)

    Article  ADS  MathSciNet  Google Scholar 

  15. Escauriaza, L., Seregin, G.A., Šverák, V.: \(L_{3,\infty }\)-solutions of Navier-Stokes equations and backward uniqueness. Uspekhi Mat. Nauk. 58(2(350)), 3–44 (2003)

  16. Giga, Y.: Solutions for semilinear parabolic equations in \(L^p\) and regularity of weak solutions of the Navier–Stokes system. J. Differ. Equ. 62(2), 186–212 (1986)

    Article  ADS  Google Scholar 

  17. Ladyzhenskaya, O.A.: On the uniqueness and on the smoothness of weak solutions of the Navier–Stokes equations. Zapiski Nauchnykh Seminarov POMI 5, 169–185 (1967)

    MATH  Google Scholar 

  18. Lei, Z., Zhou, Y.: Logarithmically improved criteria for Euler and Navier–Stokes equations. Commun. Pure Appl. Anal. 12(6), 2715–2719 (2013)

    Article  MathSciNet  Google Scholar 

  19. McCormick, D.S., Robinson, J.C., Rodrigo, J.L.: Generalised gagliardo-nirenberg inequalities using weak lebesgue spaces and bmo. Milan J. Math. 81(2), 265–289 (2013)

    Article  MathSciNet  Google Scholar 

  20. Pan, X.: Regularity of solutions to axisymmetric Navier–Stokes equations with a slightly supercritical condition. J. Differ. Equ. 260(12), 8485–8529 (2016)

    Article  ADS  MathSciNet  Google Scholar 

  21. Rusin, W., Šverák, V.: Minimal initial data for potential Navier–Stokes singularities. J. Funct. Anal. 260(3), 879–891 (2011)

    Article  MathSciNet  Google Scholar 

  22. Seregin, G.: Leray-Hopf solutions to Navier–Stokes equations with weakly converging initial data. In: Mathematical Aspects of Fluid Mechanics, volume 402 of London Math. Soc. Lecture Note Ser., pp. 251–258. Cambridge Univ. Press, Cambridge (2012)

  23. Seregin, G.: Lecture Notes on Regularity Theory for the Navier–Stokes Equations. World Scientific (2014)

  24. Tao, T.: Global regularity for a logarithmically supercritical defocusing nonlinear wave equation for spherically symmetric data. J. Hyperbolic Differ. Equ. 4(02), 259–265 (2007)

    Article  MathSciNet  Google Scholar 

  25. Tao, T.: Global regularity for a logarithmically supercritical hyperdissipative Navier–Stokes equation. Analysis & PDE 2(3), 361–366 (2010)

    Article  MathSciNet  Google Scholar 

  26. T. Tao. Quantitative bounds for critically bounded solutions to the Navier–Stokes equations (2019). arXiv:1908.04958

Download references

Acknowledgements

The second author is grateful to Patrick Gérard for bringing to his attention the result of Aynur Bulut [7].

Funding

The first author is supported by a Leverhulme Early Career Fellowship funded by The Leverhulme Trust. The second author is partially supported by the project BORDS Grant ANR-16-CE40-0027-01 and by the project SingFlows Grant ANR-18-CE40-0027 of the French National Research Agency (ANR).

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Christophe Prange.

Ethics declarations

Conflict of interest

The authors declare that they have no conflict of interest.

Additional information

Communicated by G. Seregin.

Publisher's Note

Springer Nature remains neutral with regard to jurisdictional claims in published maps and institutional affiliations.

Rights and permissions

Reprints and permissions

About this article

Check for updates. Verify currency and authenticity via CrossMark

Cite this article

Barker, T., Prange, C. Mild Criticality Breaking for the Navier–Stokes Equations. J. Math. Fluid Mech. 23, 66 (2021). https://doi.org/10.1007/s00021-021-00591-1

Download citation

  • Accepted:

  • Published:

  • DOI: https://doi.org/10.1007/s00021-021-00591-1

Keywords

Mathematics Subject Classification

Navigation