Skip to main content
Log in

Nonlinear Acoustics: Blackstock–Crighton Equations with a Periodic Forcing Term

  • Published:
Journal of Mathematical Fluid Mechanics Aims and scope Submit manuscript

Abstract

Blackstock–Crighton equations describe the motion of a viscous, heat-conducting, compressible fluid. They are used as models for acoustic wave propagation in a medium in which both nonlinear and dissipative effects are taken into account. In this article, a mathematical analysis of the Blackstock–Crighton equations with a time-periodic forcing term is carried out. For time-periodic data sufficiently restricted in size it is shown that a time-periodic solution of the same period always exists. This implies that the dissipative effects are sufficient to avoid resonance within the Blackstock–Crighton models. The equations are considered in a bounded domain with both non-homogeneous Dirichlet and Neumann boundary values. Existence of a solution is obtained via a fixed-point argument based on appropriate a priori estimates for the linearized equations.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Similar content being viewed by others

References

  1. Beyer, R.T.: Parameter of nonlinearity in fluids. J. Acoust. Soc. Am. 32, 719–721 (1960)

    Article  ADS  Google Scholar 

  2. Blackstock, D.T.: Approximate equations governing finite-amplitude sound in thermoviscous fluids. GD/E report GD-1463-52, General Dynamics Corporation (1963)

  3. Brunnhuber, R.: Well-posedness and exponential decay of solutions for the Blackstock–Crighton–Kuznetsov equation. J. Math. Anal. Appl. 433(2), 1037–1054 (2016). https://doi.org/10.1016/j.jmaa.2015.07.046

    Article  MathSciNet  MATH  Google Scholar 

  4. Brunnhuber, R., Kaltenbacher, B.: Well-posedness and asymptotic behavior of solutions for the Blackstock–Crighton–Westervelt equation. Discrete Contin. Dyn. Syst. 34(11), 4515–4535 (2014). https://doi.org/10.3934/dcds.2014.34.4515

    Article  MathSciNet  MATH  Google Scholar 

  5. Brunnhuber, R., Meyer, S.: Optimal regularity and exponential stability for the Blackstock–Crighton equation in \(L_p\)-spaces with Dirichlet and Neumann boundary conditions. J. Evol. Equ. 16(4), 945–981 (2016). https://doi.org/10.1007/s00028-016-0326-6

    Article  MathSciNet  MATH  Google Scholar 

  6. Celik, A., Kyed, M.: Nonlinear wave equation with damping: periodic forcing and non-resonant solutions to the Kuznetsov equation. Z. Angew. Math. Mech. 98, 1–19 (2017). https://doi.org/10.1002/zamm.201600280

    Article  Google Scholar 

  7. Edwards, R.E., Gaudry, G.I.: Littlewood–Paley and Multiplier Theory. Springer, Berlin (1977). Ergebnisse der Mathematik und ihrer Grenzgebiete, Band 90

    Book  Google Scholar 

  8. Everbach, E. Carr: Parameters of Nonlinearity of Acoustic Media, chapter 20, pp. 219–226. John Wiley & Sons Ltd (2007). https://doi.org/10.1002/9780470172513.ch20

    Chapter  Google Scholar 

  9. Galdi, Giovanni P., Kyed, Mads: Time-period flow of a viscous liquid past a body. To appear in London Mathematical Society Lecture Note Series (2016). arXiv:1609.09829

  10. Geymonat, G.: Sui problemi ai limiti per i sistemi di equazioni lineari ellittici. Atti Accad. Naz. Lincei, VIII. Ser., Rend., Cl. Sci. Fis. Mat. Nat. 37, 35–39 (1964)

    MathSciNet  MATH  Google Scholar 

  11. Kyed, M., Sauer, J.: A method for obtaining time-periodic \(L^{p}\) estimates. J. Differ. Equ. 262(1), 633–652 (2017). https://doi.org/10.1016/j.jde.2016.09.037

    Article  ADS  MATH  Google Scholar 

  12. Rabier, P.J.: A complement to the Fredholm theory of elliptic systems on bounded domains. Bound. Value Probl. 2009, 9 (2009)

    Article  MathSciNet  Google Scholar 

  13. Stein, E.M.: Singular Integrals and Differentiability Properties of Functions. Princeton Mathematical Series, No. 30. Princeton University Press, Princeton, N.J. (1970)

    Google Scholar 

  14. Tani, A.: Mathematical analysis in nonlinear acoustics. AIP Conf. Proc. 1907(1), 020003 (2017). https://doi.org/10.1063/1.5012614

    Article  Google Scholar 

  15. Triebel, H.: Interpolation Theory, Function Spaces, Differential Operators. VEB Deutscher Verlag der Wissenschaften, Berlin (1978)

    MATH  Google Scholar 

  16. Wloka, J.: Partial Differential Equations. Cambridge University Press, Cambridge (1987)

    Book  Google Scholar 

Download references

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Mads Kyed.

Ethics declarations

Conflict of interest

The authors declare that they have no conflict of interest.

Additional information

Communicated by E. Feireisl

Publisher's Note

Springer Nature remains neutral with regard to jurisdictional claims in published maps and institutional affiliations.

Rights and permissions

Reprints and permissions

About this article

Check for updates. Verify currency and authenticity via CrossMark

Cite this article

Celik, A., Kyed, M. Nonlinear Acoustics: Blackstock–Crighton Equations with a Periodic Forcing Term. J. Math. Fluid Mech. 21, 45 (2019). https://doi.org/10.1007/s00021-019-0451-4

Download citation

  • Accepted:

  • Published:

  • DOI: https://doi.org/10.1007/s00021-019-0451-4

Keywords

Mathematics Subject Classification

Navigation