Abstract
A coupled system of stationary fluid–structure equations in an arbitrary Lagrangian–Eulerian framework is considered in this work. Existence results presented in the literature are extended to show differentiability of the solutions to a stationary fluid–structure interaction problem with respect to the given data, volume forces and boundary values, provided a small data assumption holds. Numerical experiments are used to substantiate the theoretical findings.
This is a preview of subscription content,
to check access.






Similar content being viewed by others
References
Allen, M., Maute, K.: Reliability-based shape optimization of structures undergoing fluid–structure interaction phenomena. Comput. Methods Appl. Mech. Eng. 194, 3472–3495 (2005)
Avalos, G., Lasiecka, I., Triggiani, R.: Higher regularity of a coupled parabolic–hyperbolic fluid–structure interactive system. Georgian Math. J. 15, 403–437 (2010)
Bangerth, W., Hartmann, R., Kanschat, G.: deal.II—a general purpose object oriented finite element library. ACM Trans. Math. Softw. 33, 24/1–24/27 (2007)
Bangerth, W., Rannacher, R.: Adaptive Finite Element Methods for Differential Equations, 1st edn. Lectures in Mathematics ETH Zürich. Birkhäuser, Basel (2003)
Barbu, V., Grujic, Z., Lasiecka, I., Tuffaha, A.: Smoothness of weak solutions to a nonlinear fluid–structure interaction model. Indiana Univ. Math. J. 57, 1173–1207 (2008)
Bazilevs, Y., Takizawa, K., Tezduyar, T.: Computational Fluid–Structure Interaction: Methods and Applications. Wiley, London (2013)
Becker, R., Rannacher, R.: A feed-back approach to error control in finite element methods: basic analysis and examples. East-West J. Numer. Math. 4, 237–264 (1996)
Becker, R., Rannacher, R.: An optimal control approach to a posteriori error estimation. Acta Numer. 2001, 1–102 (2001)
Bodnar, T., Galdi, G., Necasova, S.: Fluid–Structure Interaction and Biomedical Applications. Birkhaeuser, Basel (2014)
Boulakia, M.: Existence of weak solutions for the motion of an elastic structure in an incompressible viscous fluid. C. R. Math. Acad. Sci. Paris 336, 985–990 (2003)
Bucci, F., Lasiecka, I.: Optimal boundary control with critical penalization for a pde model of fluid–solid interactions. Calc. Var. Partial Differ. Equ. 37, 217–235 (2010)
Bungartz, H.-J., Schäfer, M. (eds.): Fluid–Structure Interaction: Modelling, Simulation, Optimisation, vol. 53 of Lecture Notes in Computational Science and Engineering. Springer, Berlin (2006)
Ciarlet, P.G.: Mathematical Elasticity. Volume 1: Three Dimensional Elasticity. North-Holland, Amsterdam (1984)
Coutand, D., Shkoller, S.: Motion of an elastic solid inside an incompressible viscous fluid. Arch. Ration. Mech. Anal. 176, 25–102 (2005)
Coutand, D., Shkoller, S.: The interaction between quasilinear elastodynamics and the Navier–Stokes equations. Arch. Ration. Mech. Anal. 179, 303–352 (2006)
Deneuvy, A.C.: Theoretical study and optimization of a fluid–structure interaction problem. M2AN Math. Model. Numer. Anal. 22, 75–92 (1988)
Desjardins, B., Esteban, M.J.: Existence of weak solutions for the motion of rigid bodies in a viscous fluid. Arch. Ration. Mech. Anal. 146, 59–71 (1999)
Desjardins, B., Esteban, M.J., Grandmont, C., Le Tallec, P.: Weak solutions for a fluid–structure interaction problem. Rev. Mat. Complut. 14, 523–538 (2001)
dos Santos, N.D., Gerbeau, J.-F., Bourgat, J.F.: A partitioned fluid–structure algorithm for elastic thin valves with contact. Comput. Methods Appl. Mech. Eng. 197, 1750–1761 (2008)
Dunne, T., Richter, T., Rannacher, R.: Numerical simulation of fluid–structure interaction based on monolithic variational formulations. In: Comtemporary Challenges in Mathematical Fluid Mechanics, pp. 1–75. World Scientific, Singapore (2010)
Failer, L., Meidner, D., Vexler, B.: Optimal control of a linear unsteady fluid–structure interaction problem. J. Optim. Theory Appl. 170, 1–27 (2017)
Failer, L., Wick, T.: Adaptive time-step control for nonlinear fluid–structure interaction. J. Comput. Phys. 366, 448–477 (2018)
Formaggia, L., Nobile, F.: A stability analysis for the arbitrary Lagrangian Eulerian formulation with finite elements. East-West J. Numer. Math. 7, 105–132 (1999)
Formaggia, L., Quarteroni, A., Veneziani, A. (eds.): Cardiovascular Mathematics, vol. 1 of MS&A. Modeling, Simulation and Applications. Modeling and Simulation of the Circulatory System. Springer, Milan (2009)
Frei, S., Holm, B., Richter, T., Wick, T., Yang, H.: Fluid–Structure Interaction: Modeling, Adaptive Discretisations and Solvers. Walter de Gruyter, Berlin (2017)
Galdi, G., Rannacher, R.: Fundamental Trends in Fluid–Structure Interaction. World Scientific, Singapore (2010)
Goll, C., Wick, T., Wollner, W.: DOpElib: differential equations and optimization environment; a goal oriented software library for solving PDEs and optimization problems with PDEs. Arch. Numer. Softw. 5, 1–14 (2017)
Grandmont, C.: Existence et unicité de solutions d’un problème de couplage fluide-structure bidimensionnel stationnaire. C. R. Acad. Sci. Paris 326, 651–656 (1998)
Grandmont, C.: Existence for a three-dimensional steady state fluid–structure interaction problem. J. Math. Fluid Mech. 4, 76–94 (2002)
Grandmont, C.: Existence of weak solutions for the unsteady interaction of a viscous fluid with an elastic plate. SIAM J. Math. Anal. 40, 716–737 (2008)
Grätsch, T., Bathe, K.-J.: Goal-oriented error estimation in the analysis of fluid flows with structural interactions. Comput. Methods Appl. Mech. Eng. 195, 5673–5684 (2006)
Helenbrook, B.: Mesh deformation using the biharmonic operator. Int. J. Numer. Methods Eng. 56, 1–30 (2001)
Heywood, J.G., Rannacher, R., Turek, S.: Artificial boundaries and flux and pressure conditions for the incompressible Navier–Stokes equations. Int. J. Numer. Methods Fluids 22, 325–352 (1996)
Hirth, C., Amsden, A., Cook, J.: An arbitrary Lagrangian–Eulerian computing method for all flow speeds. J. Comput. Phys. 14, 227–253 (1974)
Hron, J., Turek, S.: Proposal for Numerical Benchmarking of Fluid–Structure Interaction Between an Elastic Object and Laminar Incompressible Flow, vol. 53, pp. 146–170. Springer, Berlin (2006)
Hughes, T., Liu, W., Zimmermann, T.: Lagrangian–Eulerian finite element formulation for incompressible viscous flows. Comput. Methods Appl. Mech. Eng. 29, 329–349 (1981)
Langer, U., Yang, H.: Partitioned solution algorithms for fluid–structure interaction problems with hyperelastic models. J. Comput. Appl. Math. 276, 47–61 (2015)
Lund, E., Moller, H., Jakobsen, L.A.: Shape design optimization of stationary fluid–structure interaction problems with large displacements and turbulence. Struct. Multidiscip. Optim. 25, 383–392 (2003)
Murea, C.M., Vázquez, C.: Sensitivity and approximation of coupled fluid–structure equations by virtual control method. Appl. Math. Optim. 52, 183–218 (2005)
Nobile, F.: Numerical Approximation of Fluid–Structure Interaction Problems with Applications to Haemodynamics. Ph.D. thesis, École Polytechnique Fédérale de Lausanne (2001)
Nobile, F., Vergara, C.: An effective fluid–structure interaction formulation for vascular dynamics by generalized robin conditions. SIAM J. Sci. Comput. 30, 731–763 (2008)
Noh, W.: A Time-Dependent Two-Space-Dimensional Coupled Eulerian-Lagrangian Code, Vol. 3 of Methods Comput. Phys, pp. 117–179. Academic Press, New York (1964)
Perego, M., Veneziani, A., Vergara, C.: A variational approach for estimating the compliance of the cardiovascular tissue: an inverse fluid–structure interaction problem. SIAM J. Sci. Comput. 33, 1181–1211 (2011)
Piperno, S., Farhat, C.: Paritioned procedures for the transient solution of coupled aeroelastic problems—part ii: energy transfer analysis and three-dimensional applications. Comput. Methods Appl. Mech. Eng. 190, 3147–3170 (2001)
Quaini, A., Canic, S., Glowinski, R., Igo, S., Hartley, C.J., Zoghbi, W., Little, S.: Validation of a 3d comoputational fluid–structure interaction model simulating flow through elastic aperature. J. Biomech. 45, 310–318 (2012)
Raymond, J.-P.: Feedback stabilization of a fluid–structure model. SIAM J. Control Optim. 48, 5398–5443 (2010)
Richter, T.: Goal-oriented error estimation for fluid–structure interaction problems. Comput. Methods Appl. Mech. Eng. 223–224, 38–42 (2012)
Richter, T.: Fluid–Structure Interactions: Models, Analysis, and Finite Elements. Springer, Berlin (2017)
Richter, T., Wick, T.: Optimal control and parameter estimation for stationary fluid–structure interaction problems. SIAM J. Sci. Comput. 35, B1085–B1104 (2013)
Schäfer, M., Sternel, D., Becker, G., Pironkov, P.: Efficient Numerical Simulation and Optimization of Fluid–Structure Interaction, vol. 53, pp. 133–160. Springer, Berlin (2010)
Stein, K., Tezduyar, T., Benney, R.: Mesh moving techniques for fluid–structure interactions with large displacements. J. Appl. Mech. 70, 58–63 (2003)
Takizawa, K., Tezduyar, T.: Computational methods for parachute fluid–structure interactions. Arch. Comput. Methods Eng. 19, 125–169 (2012)
Temam, R.: Navier–Stokes Equations: Theory and Numerical Analysis. Studies in Mathematics and Its Applications, vol. 2. North-Holland Publishing Co., Amsterdam (1977)
Turek, S., Hron, J., Razzaq, M., Wobker, H., Schäfer, M.: Numerical Benchmarking of Fluid–Structure Interaction: A Comparison of Different Discretization and Solution Approaches, Fluid Structure Interaction II: Modelling, Simulation, Optimization, pp. 413–424. Springer, Heidelberg (2010)
van der Zee, K., van Brummelen, E., de Borst, R.: Goal-oriented error estimation for Stokes flow interacting with a flexible channel. Int. J. Numer. Methods Fluids 56, 1551–1557 (2008)
Wick, T.: Fluid–structure interactions using different mesh motion techniques. Comput. Struct. 89, 1456–1467 (2011)
Wick, T.: Goal-oriented mesh adaptivity for fluid–structure interaction with application to heart-valve settings. Arch. Mech. Eng. 59, 73–99 (2012)
Winslow, A.: Numerical solution of the quasi-linear poisson equation in a nonuniform triangle mesh. J. Comput. Phys. 1, 149–172 (1967)
Author information
Authors and Affiliations
Corresponding author
Additional information
Communicated by R. Rannacher
Publisher's Note
Springer Nature remains neutral with regard to jurisdictional claims in published maps and institutional affiliations.
Rights and permissions
About this article
Cite this article
Wick, T., Wollner, W. On the Differentiability of Fluid–Structure Interaction Problems with Respect to the Problem Data. J. Math. Fluid Mech. 21, 34 (2019). https://doi.org/10.1007/s00021-019-0439-0
Accepted:
Published:
DOI: https://doi.org/10.1007/s00021-019-0439-0