Skip to main content
Log in

Large Oceanic Gyres: Lagrangian Description

  • Published:
Journal of Mathematical Fluid Mechanics Aims and scope Submit manuscript

Abstract

A hydrodynamic model of an oceanic gyre is proposed. The fluid motion is considered in the leading-order shallow-water approximation in the spherical Lagrangian coordinates. Motion of liquid particles at the spherical surfaces is studied versus latitude and longitude as unknown variables. The boundary condition at the edge of the gyre is not formulated. An approximation of the “averaged latitude” is introduced when the coefficients of the momentum equation are replaced by constant values corresponding to the latitude of the gyre’s center. It is shown that the resulting set of equations is similar to the equations of plane hydrodynamics. Its analytical solutions containing two arbitrary functions and two arbitrary constants (time frequencies) are obtained. The trajectories of liquid particles represent a superposition of two rotational motions, and their general properties are discussed. A family of the gyres with invariable shape in time is selected. Their outer boundaries either remain motionless or rotate uniformly. An example of the unsteady gyre both rotating and deforming in its shape is studied numerically.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Similar content being viewed by others

References

  1. Verkley, T.M.: The construction of barotropic modons on a sphere. J. Atmos. Sci. 41, 2492–2504 (1984)

    Article  MathSciNet  ADS  Google Scholar 

  2. Paldor, N.: Shallow Water Waves on the Rotating Earth. Springer, Berlin (2015)

    Book  Google Scholar 

  3. Constantin, A., Johnson, R.S.: Steady large-scale ocean flows in spherical coordinates. Oceanography 31, 42–50 (2018)

    Article  Google Scholar 

  4. Constantin, A., Johnson, R.S.: Large gyres as a shallow-water asymptotic solution of Euler’s equation in spherical coordinates. Proc. R. Soc. A 473, 20170063 (2017)

    Article  MathSciNet  ADS  Google Scholar 

  5. Constantin, A., Johnson, R.S.: Large-scale oceanic currents as shallow-water asymptotic solutions of the Navier–Stokes equation in rotating spherical coordinates. Deep Sea Res. Part II Top. Stud. Oceanogr. 160, 32–40 (2019)

    Article  ADS  Google Scholar 

  6. Constantin, A., Johnson, R.S.: Ekman-type solutions for shallow-water flows on a rotating sphere: a new perspective on a classical problem. Phys. Fluids 31, 021401 (2019)

    Article  ADS  Google Scholar 

  7. Pedlosky, J.: The stability of currents in the atmosphere and the ocean: part I. J. Atmos. Sci. 27, 15–30 (1964)

    Article  ADS  Google Scholar 

  8. Philander, S.G.H.: Instability of zonal equatorial currents. J. Geophys. Res. 81(21), 3725–3735 (1976)

    Article  ADS  Google Scholar 

  9. Pedlosky, J.: Geophysical Fluid Dynamics. Springer, Berlin (1987)

    Book  Google Scholar 

  10. Kamenkovich, I.V., Pedlosky, J.: Radiating instability of nonzonal ocean currents. J. Phys. Oceanogr. 26, 622–643 (1996)

    Article  ADS  Google Scholar 

  11. Walker, A., Pedlosky, J.: Instability of meridional baroclinic currents. J. Phys. Oceanogr. 32, 1075–1093 (2002)

    Article  MathSciNet  ADS  Google Scholar 

  12. Pedlosky, J., Thomson, J.: Baroclinic instability of time-dependent currents. J. Fluid Mech. 490, 189–215 (2003)

    Article  MathSciNet  ADS  Google Scholar 

  13. Hristova, H.G., Pedlosky, J., Spall, M.A.: Radiating instability of a meridional boundary current. J. Phys. Oceanogr. 38, 2294–2307 (2008)

    Article  ADS  Google Scholar 

  14. Cushman-Roisin, B.: Trajectories in Gulf Stream meanders. J. Geophys. Res. 98(C2), 2543–2554 (1993)

    Article  ADS  Google Scholar 

  15. Yuan, G.-C., Pratt, L.J., Jones, C.K.R.T.: Barrier destruction and Lagrangian predictability at depth in a meandering jet. Dyn. Atmos. Oceans 35, 41–61 (2002)

    Article  ADS  Google Scholar 

  16. Gill, A.E., Green, J.S.A., Simmons, A.I.: Energy partition in the large-scale ocean circulation and the production of mid-ocean eddies. Deep Sea Res. 21, 499–528 (1974)

    Google Scholar 

  17. Robinson, A.R., McWilliams, J.C.: The baroclinic instability of the open ocean. J. Phys. Oceanogr. 4, 281–294 (1974)

    Article  ADS  Google Scholar 

  18. Robinson, A.R.: Eddies in Marine Science. Springer, Berlin (1983)

    Book  Google Scholar 

  19. Spall, M.A.: Cooling spirals and recirculation in the subtropical gyre. J. Phys. Oceanogr. 22, 564–571 (1991)

    Article  ADS  Google Scholar 

  20. Spall, M.A.: Generation of strong mesoscale eddies by weak ocean gyres. J. Mar. Res. 58, 97–116 (2000)

    Article  Google Scholar 

  21. Manucharyan, G.E., Spall, M.A., Thompson, A.F.: A theory of the wind-driven Beaufort gyre variability. J. Phys. Oceanogr. 46, 3263–3278 (2016)

    Article  ADS  Google Scholar 

  22. Bennett, A.: Lagrangian Fluid Dynamics. Cambridge University Press, Cambridge (2006)

    Book  Google Scholar 

  23. Abrashkin, A.A., Zen’kovich, D.A., Yakubovich, E.I.: Matrix formulation of hydrodynamics and extension of Ptolemaic flows to three-dimensional motions. Radiophys. Quantum Electron. 39, 518–526 (1996)

    Article  ADS  Google Scholar 

  24. Zakharov, V.E., Kuznetsov, E.A.: Hamiltonian formalism for nonlinear waves. Phys. Usp. 40, 1087–1116 (1997)

    Article  ADS  Google Scholar 

  25. Kuznetsov, E.A.: Vortex line representation for the hydrodynamic type equations. J. Nonlinear Math. Phys. 13(1), 64–80 (2006)

    Article  MathSciNet  ADS  Google Scholar 

  26. Frisch, U., Villone, B.: Cauchy’s almost forgotten Lagrangian formulation of the Euler equation for 3D incompressible flow. Eur. Phys. J. H 39, 325–351 (2014)

    Article  Google Scholar 

  27. Besse, N., Frisch, U.: Geometric formulation of the Cauchy invariants for incompressible Euler flow in flat and curved spaces. J. Fluid Mech. 825, 412–478 (2017)

    Article  MathSciNet  ADS  Google Scholar 

  28. Lamb, G.: Hydrodynamics, 6th edn. Cambridge University Press, Cambridge (1932)

    MATH  Google Scholar 

  29. Viudez, A., Dritschel, D.G.: Vertical velocity in mesoscale geophysical flows. J. Fluid Mech. 483, 199–223 (2015)

    Article  MathSciNet  ADS  Google Scholar 

  30. Herbei, R., McKeague, I., Speer, K.G.: Gyres and jets: inversion of tracer data for ocean circulation structure. J. Phys. Oceanogr. 39, 1180–1202 (2009)

    Google Scholar 

  31. Kochin, N.E., Kibel, I.A., Roze, N.V.: Theoretical Hydromechanics. Interscience, New York (1964)

    MATH  Google Scholar 

  32. Constantin, A.: Nonlinear water waves with applications to wave–current interactions and tsunamis. In: CBMS-NSF Conference Series in Applied Mathematics, vol. 81. SIAM, Philadelphia, PA (2011)

  33. Abrashkin, A.A., Yakubovich, E.I.: Planar rotational flows of an ideal fluid. Sov. Phys. Dokl. 29, 370–371 (1984)

    MATH  ADS  Google Scholar 

  34. Aleman, A., Constantin, A.: Harmonic maps and ideal fluid flows. Arch. Ration. Mech. Anal. 204, 479–513 (2012)

    Article  MathSciNet  Google Scholar 

  35. Guimbard, D., Leblanc, S.: Local stability of the Abrashkin–Yakubovich family of vortices. J. Fluid Mech. 567, 91–110 (2006)

    Article  MathSciNet  ADS  Google Scholar 

Download references

Acknowledgements

The publication was prepared within the framework of the Academic Fund Program at the National Research University Higher School of Economics (HSE) in 2018-2019 (Grant No 18-01- 0006) and by the Russian Academic Excellence Project “5-100”. The author has the pleasure to thank Prof. A. Constantin for stimulating discussions.

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Anatoly Abrashkin.

Ethics declarations

Conflict of interest

The author declares that he has no conflict of interest.

Additional information

Communicated by A. Constantin

Publisher's Note

Springer Nature remains neutral with regard to jurisdictional claims in published maps and institutional affiliations.

Rights and permissions

Reprints and permissions

About this article

Check for updates. Verify currency and authenticity via CrossMark

Cite this article

Abrashkin, A. Large Oceanic Gyres: Lagrangian Description. J. Math. Fluid Mech. 21, 25 (2019). https://doi.org/10.1007/s00021-019-0430-9

Download citation

  • Accepted:

  • Published:

  • DOI: https://doi.org/10.1007/s00021-019-0430-9

Mathematics Subject Classification

Keywords

Navigation