Skip to main content
Log in

Analysis of Variable-Step/Non-autonomous Artificial Compression Methods

  • Published:
Journal of Mathematical Fluid Mechanics Aims and scope Submit manuscript

Abstract

A standard artificial compression (AC) method for incompressible flow is

$$\begin{aligned}&\frac{u_{n+1}^{\varepsilon }-u_{n}^{\varepsilon }}{k}+u_{n+1}^{\varepsilon }\cdot \nabla u_{n+1}^{\varepsilon }+{\frac{1}{2}}u_{n+1}^{\varepsilon }\nabla \cdot u_{n+1}^{\varepsilon }+\nabla p_{n+1}^{\varepsilon }-\nu \Delta u_{n+1}^{\varepsilon }=f\text { ,} \\&\quad \varepsilon \frac{p_{n+1}^{\varepsilon }-p_{n}^{\varepsilon }}{k} +\nabla \cdot u_{n+1}^{\varepsilon }=0 \end{aligned}$$

for, typically, \(\varepsilon =k\) (timestep). It is fast, efficient and stable with accuracy \(O(\varepsilon +k)\). For adaptive (and thus variable) timestep \(k_{n}\) (and thus \(\varepsilon =\varepsilon _{n}\)) its long time stability is unknown. For variable \(k,\varepsilon \) this report shows how to adapt a standard AC method to recover a provably stable method. For the associated continuum AC model, we prove convergence of the \(\varepsilon =\varepsilon (t)\) artificial compression model to a weak solution of the incompressible Navier–Stokes equations as \(\varepsilon =\varepsilon (t)\rightarrow 0\). The analysis is based on space-time Strichartz estimates for a non-autonomous acoustic equation. Variable \(\varepsilon ,k\) numerical tests in 2d and 3d are given for the new AC method.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Similar content being viewed by others

References

  1. Alnæs, M., Blechta, J., Hake, J., Johansson, A., Kehlet, B., Logg, A., Richardson, C., Ring, J., Rognes, M.E., Wells, G.N.: The FEniCS project version 1.5. Arch. Numer. Softw. 3, 9–23 (2015)

    Google Scholar 

  2. Aubin, J.: Un théorème de compacité. C. R. Acad. Sci. Paris 256, 5042–5044 (1963)

    MathSciNet  MATH  Google Scholar 

  3. Berselli, L.C., Spirito, S.: On the construction of suitable weak solutions to the 3D Navier–Stokes equations in a bounded domain by an artificial compressibility method. Commun. Contemp. Math. 20, 1650064 (2018). https://doi.org/10.1142/S0219199716500644

    Article  MathSciNet  Google Scholar 

  4. Chorin, A.J.: Numerical solution of the Navier–Stokes equations. Math. Comput. 22, 745–762 (1968)

    Article  MathSciNet  Google Scholar 

  5. Chorin, A.J.: On the convergence of discrete approximations to the Navier–Stokes equations. Math. Comput. 23, 341–353 (1969)

    Article  MathSciNet  Google Scholar 

  6. Chaćon Rebollo, T., Lewandowski, R.: Mathematical and numerical foundations of turbulence models and applications. Modeling and Simulation in Science, Engineering and Technology. Springer, New York (2014)

    MATH  Google Scholar 

  7. Charnyi, S., Heister, T., Olshanskii, M., Rebholz, L.: On conservation laws of Navier–Stokes Galerkin discretizations. J. Comput. Phys. 337, 289–308 (2017)

    Article  ADS  MathSciNet  Google Scholar 

  8. DeCaria, V., Layton, W., McLaughlin, M.: A conservative, second order, unconditionally stable artificial compression method. CMAME 325, 733–747 (2017)

    ADS  MathSciNet  Google Scholar 

  9. Donatelli, D., Marcati, P.: A dispersive approach to the artificial compressibility approximations of the Navier–Stokes equations in 3D. J. Hyperbolic Differ. Equ. 3, 575–588 (2006)

    Article  MathSciNet  Google Scholar 

  10. Donatelli, D., Marcati, P.: Leray weak solutions of the incompressible Navier–Stokes system on exterior domains via the artificial compressibility method. Indiana Univ. Math. J. 59, 1831–1852 (2010)

    Article  MathSciNet  Google Scholar 

  11. Donatelli, D., Spirito, S.: Weak solutions of Navier–Stokes equations constructed by artificial compressibility method are suitable. J. Hyperbolic Differ. Equ. 8, 101–113 (2011)

    Article  MathSciNet  Google Scholar 

  12. Ginibre, J., Velo, G.: Generalized Strichartz inequalities for the wave equation. J. Funct. Anal. 133, 50–68 (1995)

    Article  MathSciNet  Google Scholar 

  13. Guermond, J., Minev, P., Shen, J.: An overview of projection methods for incompressible flows. Comput. Methods Appl. Mech. Eng. 195, 6011–6045 (2006)

    Article  ADS  MathSciNet  Google Scholar 

  14. Guermond, J.-L., Minev, P.: High-order time stepping for the incompressible Navier–Stokes equations. SIAM J. Sci. Comput. 37–6, A2656–A2681 (2015). https://doi.org/10.1137/140975231

    Article  MathSciNet  MATH  Google Scholar 

  15. Guermond, J.-L., Minev, P.: High-order time stepping for the Navier–Stokes equations with minimal computational complexity. JCAM 310, 92–103 (2017)

    MathSciNet  MATH  Google Scholar 

  16. Guermond, J.-L., Minev, P.: High-order, adaptive time stepping scheme for the incompressible Navier–Stokes equations. Technical report 2018

  17. Gunzburger, M.D.: Finite Element Methods for Viscous Incompressible Flows—A Guide to Theory, Practices, and Algorithms. Academic Press, Cambridge (1989)

    Google Scholar 

  18. Gresho, P.M., Sani, R.L.: Incompressible Flows and the Finite Element Method, vol. 2. Wiley, Chichester (2000)

    MATH  Google Scholar 

  19. Johnston, H., Liu, J.-G.: Accurate, stable and efficient Navier–Stokes solvers based on an explicit treatment of the pressure term. JCP 199, 221–259 (2004)

    Article  ADS  MathSciNet  Google Scholar 

  20. Keel, M., Tao, T.: Endpoint Strichartz estimates. Am. J. Math. 120, 955–980 (1998)

    Article  MathSciNet  Google Scholar 

  21. Klainerman, S., Macedon, M.: Space-time estimates for null forms and the local existence theorem. Commun. Pure Appl. Math. 46, 1221–1268 (1993)

    Article  MathSciNet  Google Scholar 

  22. Kobel’kov, G.M.: Symmetric approximations of the Navier–Stokes equations. Sb. Math. 193, 1027–1047 (2002)

    Article  MathSciNet  Google Scholar 

  23. Layton, W.: An energy analysis of a degenerate hyperbolic partial differential equations. Apl. Mat. 29, 350–366 (1984)

    MathSciNet  MATH  Google Scholar 

  24. Lions, J.L.: Sur l’existence de solutions des équations de Navier–Stokes. C. R. Acad. Sci. Paris 248, 2847–2849 (1959)

    MathSciNet  MATH  Google Scholar 

  25. Lions, J.L.: Quelque méthodes de résolution des problemes aux limites non linéaires. Dunod-Gauth. Vill, Paris (1969)

    MATH  Google Scholar 

  26. Lions, P.L.: Mathematical Topics in Fluid Mechanics: Volume 2: Compressible Models. Oxford University Press on Demand, Oxford (1996)

    Google Scholar 

  27. Mockenhaupt, G., Seeger, A., Sogge, C.D.: Local smoothing of Fourier integral operators and Carleson–Sjölin estimates. J. Am. Math. Soc. 6, 65–130 (1993)

    MATH  Google Scholar 

  28. Ohwada, T., Asinari, P.: Artificial compressibility method revisited: asymptotic numerical method for incompressible Navier–Stokes equations. J. Comput. Phys. 229, 16981723 (2010)

    Article  MathSciNet  Google Scholar 

  29. Oskolkov, A.: On a quasi-linear parabolic system with a small parameter approximating the Navier–Stokes system. Zapiski Nauchnykh Seminarov POMI 21, 79–103 (1971)

    Google Scholar 

  30. Prohl, A.: Projection and Quasi-Compressibility Methods for Solving the Incompressible Navier–Stokes Equations. Springer, Berlin (1997)

    Book  Google Scholar 

  31. Shen, J.: On error estimates of projection methods for the Navier–Stokes equations: first order schemes. SINUM 29, 57–77 (1992)

    Article  MathSciNet  Google Scholar 

  32. Shen, J.: On a new pseudocompressibility method for the incompressible Navier–Stokes equations. Appl. Numer. Math. 21, 71–90 (1996)

    Article  MathSciNet  Google Scholar 

  33. Smith, H.F.: A parametrix construction for wave equations with \(C^{1,1}\) coefficients. Ann. Inst. Fourier (Grenoble) 48, 797–835 (1998)

    Article  MathSciNet  Google Scholar 

  34. Söderlind, G., Fekete, I., Faragó, I.: On the 0-stability of multistep methods on smooth nonuniform grids, arXiv:1804.04553 (2018)

  35. Sogge, C.: Lectures on Nonlinear Wave Equations. International Press, Cambridge (1995)

    MATH  Google Scholar 

  36. Stein, E.M.: Harmonic Analysis (PMS-43), Volume 43: Real-Variable Methods, Orthogonality, and Oscillatory Integrals. Princeton University Press, Princeton (2016)

    Google Scholar 

  37. Strichartz, R.S.: Restrictions of Fourier transforms to quadratic surfaces and decay of solutions of wave equations. Duke Math. J. 44, 705–714 (1977)

    Article  MathSciNet  Google Scholar 

  38. Tataru, D.: Strichartz estimates for operators with nonsmooth coefficients and the nonlinear wave equation. Am. J. Math. 122, 349–376 (2000)

    Article  MathSciNet  Google Scholar 

  39. Tataru, D.: Strichartz estimates for second order hyperbolic operators with nonsmooth coefficients. II. Am. J. Math. 123, 385–423 (2001)

    Article  MathSciNet  Google Scholar 

  40. Tataru, D.: Strichartz estimates for second order hyperbolic operators with nonsmooth coefficients. III. J. Am. Math. Soc. 15, 419–442 (2002)

    Article  MathSciNet  Google Scholar 

  41. Temam, R.: Sur l’approximation de la solution des équations de Navier–Stokes par la méthode des pas fractionnaires (I). Arch. Ration. Mech. Anal. 32, 135–153 (1969)

    Article  Google Scholar 

  42. Temam, R.: Sur l’approximation de la solution des équations de Navier–Stokes par la méthode des pas fractionnaires (II). Arch. Ration. Mech. Anal. 33, 377–385 (1969)

    Article  Google Scholar 

  43. Temam, R.: Navier–Stokes equations and nonlinear functional analysis. In: CBMS-NSF Regional Conference Series in Applied Mathematics, vol. 41. SIAM, Philadelphia, PA (1983)

  44. Temam, R.: Navier–Stokes equations. AMS Chelsea Publishing, Providence (2001)

    MATH  Google Scholar 

  45. Van Kan, J.: A second order accurate pressure-correction scheme for viscous incompressible flow. SIAM J. Sci. Comput. 7, 870–891 (1986)

    Article  MathSciNet  Google Scholar 

  46. Yang, L., Badia, S., Codina, R.: A pseudo-compressible variational multiscale solver for turbulent incompressible flows. Comput. Mech. 58, 1051–1069 (2016)

    Article  MathSciNet  Google Scholar 

  47. Zeytounian, R.K.: Topics in Hyposonic Flow Theory, LN in Physics. Springer, Berlin (2006)

    Book  Google Scholar 

Download references

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to William Layton.

Ethics declarations

Conflict of interest

The authors declare that they have no conflicts of interest.

Additional information

Communicated by G. P. Galdi.

Publisher's Note

Springer Nature remains neutral with regard to jurisdictional claims in published maps and institutional affiliations.

R. M. Chen: The research herein was partially supported by NSF Grant DMS 1613375. W. Layton: The research herein was partially supported by NSF Grants DMS1522267, 1817542 and CBET 1609120. M. McLaughlin: The research herein was partially supported by NSF Grants DMS1522267 and 1817542.

Rights and permissions

Reprints and permissions

About this article

Check for updates. Verify currency and authenticity via CrossMark

Cite this article

Chen, R.M., Layton, W. & McLaughlin, M. Analysis of Variable-Step/Non-autonomous Artificial Compression Methods. J. Math. Fluid Mech. 21, 30 (2019). https://doi.org/10.1007/s00021-019-0429-2

Download citation

  • Accepted:

  • Published:

  • DOI: https://doi.org/10.1007/s00021-019-0429-2

Navigation