Skip to main content
Log in

A New Prodi–Serrin Type Regularity Criterion in Velocity Directions

  • Published:
Journal of Mathematical Fluid Mechanics Aims and scope Submit manuscript

Abstract

In this article we generalize (Vasseur in Appl Math 54(1):47–52, 2009) to Lorentz spaces. More specifically, we prove the following. Let u be a Leray–Hopf solution to the Navier–Stokes equation with viscosity \(\nu \) and initial value \(u_0 \in L^2 ({\mathbb {R}}^3)\). Then there is \(c_0 > 0\) such that u is smooth beyond \(T > 0\) if

$$\begin{aligned} \left\| {{\mathrm{div}}} \left( \frac{u}{| u |} \right) \right\| _{L^{p, \infty } (0, T ; L^{q, \infty } ({\mathbb {R}}^3))} < c_0 \nu ^{1 - \frac{1}{p}} \Vert u_0 \Vert _{L^2}^{- 1} \end{aligned}$$
(1)

with \(\frac{2}{p} + \frac{3}{q} \leqslant \frac{1}{2}\), \(q > 6\). We also show that u remains smooth beyond \(T > 0\) if

$$\begin{aligned} \left\| {\mathrm{div}} \left( \frac{u}{| u |} \right) \right\| _{L^{p, r} (0, T ; L^{q, \infty } ({\mathbb {R}}^3))} < \infty \end{aligned}$$
(2)

with \(\frac{2}{p} + \frac{3}{q} \leqslant \frac{1}{2}, q > 6\) and \({1 \leqslant r < \infty }\).

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Similar content being viewed by others

References

  1. Bosia, S., Conti, M., Pata, V.: A regularity criterion for the Navier–Stokes equations in terms of the pressure gradient. Open Math. 12(7), 1015–1025 (2014)

    Article  MathSciNet  Google Scholar 

  2. Berselli, L.C.: Some criteria concerning the vorticity and the problem of global regularity for the 3D Navier-Stokes equations. Ann. Univ. Ferrara 55, 209 (2009)

    Article  MathSciNet  Google Scholar 

  3. Berselli, L.C., Galdi, G.P.: Regularity criteria involving the pressure for the weak solutions to the Navier–Stokes equations. Proc. Am. Math. Soc. 130, 3585–3595 (2002)

    Article  MathSciNet  Google Scholar 

  4. Bosia, S., Pata, V., Robinson, J.C.: A weak-\(L^p\) prodi-serrin type regularity criterion for the Navier–Stokes equations. J. Math. Fluid Mech. 16, 721–725 (2014)

    Article  ADS  MathSciNet  Google Scholar 

  5. Bjorland, C., Vasseur, A.: Weak in space, log in time improvement of the Ladyzhenskaja–Prodi–Serrin criteria. J. Math. Fluid Mech 13(2), 259–269 (2011)

    Article  ADS  MathSciNet  Google Scholar 

  6. Chan, C.H.: Smoothness criterion for Navier-Stokes equations in terms of regularity along the streamlines. Methods Appl. Anal. 17(1), 81–104 (2010)

    MathSciNet  MATH  Google Scholar 

  7. Chae, D., Lee, J.: Regularity criterion in terms of pressure for the Navier–Stokes equations. Nonlinear Anal. Theory Methods Appl. 46(5), 727–735 (2001)

    Article  MathSciNet  Google Scholar 

  8. Chamorro, D., Lemarié-Rieusset, P.-G.: Real interpolation method, Lorentz spaces and refined Sobolev inequalities. J. Funct. Anal. 265(12), 3219–3232 (2013)

    Article  MathSciNet  Google Scholar 

  9. Cao, C., Titi, E.S.: Regularity criteria for the three-dimensional Navier–Stokes equations. Indiana Univ. Math. J. 57(6), 2643–2661 (2008)

    Article  MathSciNet  Google Scholar 

  10. Cao, C., Titi, E.S.: Global regularity criterion for the 3D Navier–Stokes equations involving one entry of the velocity gradient tensor. Arch. Ration. Mech. Anal. 202, 919–932 (2011)

    Article  MathSciNet  Google Scholar 

  11. Chan, C.H., Vasseur, A.: Log improvement of the Prodi–Serrin criteria for Navier–Stokes equations. Methods Appl. Anal. 14(2), 197–212 (2007)

    MathSciNet  MATH  Google Scholar 

  12. Chen, Q., Zhang, Z.: Regularity criterion via the pressure on weak solutions to the 3D Navier–Stokes equations. Proc. Am. Math. Soc. 135, 1829–1837 (2007)

    Article  MathSciNet  Google Scholar 

  13. da Veiga, H.B.: A new regularity class for the Navier–Stokes equations in \({\mathbb{R}}^n\). Chin. Ann. Math. 16B(4), 407–412 (1995)

    MATH  Google Scholar 

  14. Escauriaza, L., Seregin, G., Sverák, V.: \(L_{3, \infty }\)-solutions of Navier–Stokes equations and backward uniqueness. Russ. Math. Surv. 58(2), 211–250 (2003)

    Article  Google Scholar 

  15. Fan, J., Ozawa, T.: Regularity criterion for weak solutions to the Navier–Stokes equations in terms of the gradient of the pressure. J. Inequal. Appl. 2008, 412678 (2008)

    Article  MathSciNet  Google Scholar 

  16. Giga, Y.: Solutions for semilinear parabolic equations in \(L^p\) and regularity of weak solutions of the Navier–Stokes system. J. Differ. Equ. 62(2), 186–212 (1986)

    Article  ADS  Google Scholar 

  17. Grafakos, L.: Classical fourier analysis. In: Graduate Texts in Mathematics, vol. 249, 3rd edn. Springer (2014)

  18. Han, B., Lei, Z., Li, D., Zhao, N.: Sharp one component regularity for Navier–Stokes. arXiv:1708.04119 (August 2017)

  19. Kozono, H., Taniuchi, Y.: Bilinear estimates in BMO and the Navier–Stokes equations. Math. Z. 235(1), 173–194 (2000)

    Article  MathSciNet  Google Scholar 

  20. Lemarié-Rieusset, P.G.: Recent Developments in the Navier–Stokes Problem. Chapman & Hall/CRC, London (2002)

    Book  Google Scholar 

  21. Lemarie-Rieusset, P.G.: The Navier–Stokes Problem in the 21st Century. Chapman & Hall/CRC, London (2016)

    Book  Google Scholar 

  22. Leray, J.: On the motion of a viscous liquid filling space. Acta Math. 63, 193–248 (1934)

    Article  MathSciNet  Google Scholar 

  23. Neustupa, J., Penel, P.: Regularity of a suitable weak solution to the Navier–Stokes equations as a consequence of regularity of one velocity component. In: Sequeira, A. (ed.) Applied Nonlinear Analysis, pp. 391–402. Kluwer Academic/Plenum Publishers, New York (1999)

    Google Scholar 

  24. Núñez, M.: Regularity criteria for the Navier–Stokes equations involving the ratio pressure-gradient of velocity. Math. Methods Appl. Sci. 33(3), 323–331 (2009)

    MathSciNet  MATH  Google Scholar 

  25. O’Neil, R.: Convolution operators and l(p, q) spaces. Duke Math. J. 30(1), 129–142 (1963)

    Article  MathSciNet  Google Scholar 

  26. Prodi, G.: Un teorema di unicità per le equazioni di Navier–Stokes. Ann. Mat. Pura Appl. 4(48), 173–182 (1959)

    Article  Google Scholar 

  27. Robinson, J.C., Rodrigo, J.L., Sadowski, W.: The three-dimensional Navier–Stokes equations: Classical theory. In: Cambridge Studies in Advanced Mathematics, vol. 157. Cambridge University Press (2016)

  28. Serrin, J.: On the interior regularity of weak solutions of the Navier–Stokes equations. Arch. Ration. Mech. Anal. 9, 187–191 (1962)

    Article  MathSciNet  Google Scholar 

  29. Sohr, H.: Zur regularitätstheorie der instationären gleichungen von Navier–Stokes. Math. Z. 184, 359–375 (1983)

    Article  MathSciNet  Google Scholar 

  30. Sohr, H.: A regularity class for the Navier–Stokes equations in Lorentz spaces. J. Evol. Equ. 1, 441–467 (2001)

    Article  MathSciNet  Google Scholar 

  31. Sohr, H.: The Navier-Stokes Equations: An Elementary Functional Analytic Approach. Birkhäuser, Basel (2001)

    MATH  Google Scholar 

  32. Tran, C.V., Yu, X.: Note on Prodi–Serrin–Ladyzhenskaya type regularity criteria for the Navier–Stokes equations. J. Math. Phys. 58(1), 11501 (2017)

    Article  ADS  MathSciNet  Google Scholar 

  33. Tran, C.V., Yu, X.: Regularity of Navier–Stokes flows with bounds for the pressure. Appl. Math. Lett. 67, 21–27 (2017)

    Article  MathSciNet  Google Scholar 

  34. Vasseur, A.: Regularity criterion for 3D Navier–Stokes equations in terms of the direction of the velocity. Appl. Math. 54(1), 47–52 (2009)

    Article  MathSciNet  Google Scholar 

Download references

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Benjamin Pineau.

Ethics declarations

Conflict of interest

The authors declare that they have no conflict of interest.

Additional information

Communicated by S. Friedlander.

Rights and permissions

Reprints and permissions

About this article

Check for updates. Verify currency and authenticity via CrossMark

Cite this article

Pineau, B., Yu, X. A New Prodi–Serrin Type Regularity Criterion in Velocity Directions. J. Math. Fluid Mech. 20, 1737–1744 (2018). https://doi.org/10.1007/s00021-018-0388-z

Download citation

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1007/s00021-018-0388-z

Navigation