Skip to main content
Log in

Optimal decay estimates in the critical \(L^{p}\) framework for flows of compressible viscous and heat-conductive gases

  • Published:
Journal of Mathematical Fluid Mechanics Aims and scope Submit manuscript

Abstract

The global existence issue in critical regularity spaces for the full Navier–Stokes equations satisfied by compressible viscous and heat-conductive gases has been first addressed in Danchin (Arch Ration Mech Anal 160:1–39, 2001), then recently extended to the general \(L^p\) framework in Danchin and He (Math Ann 64:1–38, 2016). In the present work, we establish decay estimates for the global solutions constructed in [13], under an additional mild integrability assumption that is satisfied if the low frequencies of the initial data are in \(L^{r}(\mathbb {R}^d)\) with \(\frac{p}{2}\le r \le \min \{2,\frac{d}{2}\}\). As a by-product in the case \(d=3,\) we recover the classical decay rate \(t^{-\frac{3}{4}}\) for \(t\rightarrow +\infty \) that has been observed by Matsumura and Nishida (J Math Kyoto Univ 20:67–104, 1980) for solutions with high Sobolev regularity. Compared to a recent paper of us (Danchin and Xu in Arch Ration Mech Anal 224:53–90, 2017) dedicated to the barotropic case, not only we are able to treat the full system, but we also weaken the low frequency assumption and improve the decay exponents for the high frequencies of the solution.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Similar content being viewed by others

References

  1. Bahouri, H., Chemin, J.-Y., Danchin, R.: Fourier Analysis and Nonlinear Partial Differential Equations, Grundlehren der mathematischen Wissenschaften, vol. 343. Springer, New York (2011)

    Book  Google Scholar 

  2. Bony, J.-M.: Calcul symbolique et propagation des singularités pour les équations aux dérivées partielles non linéaires. Ann. Sci. l’Éc. Norm. Supér. 14(4), 209–246 (1981)

    Article  Google Scholar 

  3. Cannone, M.: A generalization of a theorem by Kato on Navier–Stokes equations. Rev. Mat. Iberoam. 13(3), 515–541 (1997)

    Article  MathSciNet  Google Scholar 

  4. Charve, F., Danchin, R.: A global existence result for the compressible Navier–Stokes equations in the critical \(L^p\) framework. Arch. Ration. Mech. Anal. 198(1), 233–271 (2010)

    Article  MathSciNet  Google Scholar 

  5. Chemin, J.-Y.: Théorèmes d’unicité pour le système de Navier–Stokes tridimensionnel. J. Anal. Math. 77, 27–50 (1999)

    Article  MathSciNet  Google Scholar 

  6. Chen, Q., Miao, C., Zhang, Z.: Global well-posedness for the compressible Navier–Stokes equations with the highly oscillating initial velocity. Commun. Pure Appl. Math. 63(9), 1173–1224 (2010)

    MathSciNet  MATH  Google Scholar 

  7. Chikami, N., Danchin, R.: On the well-posedness of the full compressible Navier–Stokes system in critical Besov spaces. J. Differ. Equ. 258(10), 3435–3467 (2015)

    Article  MathSciNet  ADS  Google Scholar 

  8. Danchin, R.: Global existence in critical spaces for compressible Navier–Stokes equations. Invent. Math. 141(3), 579–614 (2000)

    Article  MathSciNet  ADS  Google Scholar 

  9. Danchin, R.: Global existence in critical spaces for flows of compressible viscous and heat-conductive gases. Arch. Ration. Mech. Anal. 160, 1–39 (2001)

    Article  MathSciNet  Google Scholar 

  10. Danchin, R.: Local theory in critical spaces for compressible viscous and heat conductive gases. Commun. Part. Differ. Equ. 26, 1183–1233 (2001)

    Article  MathSciNet  Google Scholar 

  11. Danchin, R.: On the well-posedness of the incompressible density-dependent Euler equations in the \(L^p\) framework. J. Differ. Equ. 248, 2130–2170 (2010)

    Article  Google Scholar 

  12. Danchin, R.: Fourier analysis methods for the compressible Navier-Stokes equations. In: Giga, Y., Novotny, A. (eds.) Handbook of Mathematical Analysis in Mechanics of Viscous Fluids. Springer International Publishing, Cham (2016)

    Google Scholar 

  13. Danchin, R., He, L.: The incompressible limit in \(L^p\) type critical spaces. Math. Ann. 64, 1–38 (2016)

    MATH  Google Scholar 

  14. Danchin, R., Xu, J.: Optimal time-decay estimates for the compressible Navier–Stokes equations in the critical \(L^p\) framework. Arch. Ration. Mech. Anal. 224, 53–90 (2017)

    Article  MathSciNet  Google Scholar 

  15. Fujita, H., Kato, T.: On the Navier–Stokes initial value problem I. Arch. Ration. Mech. Anal. 16, 269–315 (1964)

    Article  MathSciNet  Google Scholar 

  16. Guo, Y., Wang, Y.J.: Decay of dissipative equations and negative sobolev spaces. Commun. Part. Differ. Equ. 37, 2165–2208 (2012)

    Article  MathSciNet  Google Scholar 

  17. Haspot, B.: Existence of global strong solutions in critical spaces for barotropic viscous fluids. Arch. Ration. Mech. Anal. 202(2), 427–460 (2011)

    Article  MathSciNet  Google Scholar 

  18. Hoff, D.: Global solutions of the Navier–Stokes equations for multidimensional compressible flow with discontinuous initial data. J. Differ. Equ. 120(1), 215–254 (1995)

    Article  MathSciNet  ADS  Google Scholar 

  19. Hoff, D., Zumbrun, K.: Multidimensional diffusion waves for the Navier–Stokes equations of compressible flow. Indiana Univ. Math. J. 44, 604–676 (1995)

    Article  Google Scholar 

  20. Hoff, D., Zumbrun, K.: Multidimensional diffusion waves for the Navier–Stokes diffusion waves. Z. Angew. Math. Phys. 48, 597–614 (1997)

    Article  MathSciNet  Google Scholar 

  21. Kagei, Y., Kobayashi, T.: Asymptotic behavior of solutions of the compressible Navier-Stokes equations on the half space. Arch. Ration. Mech. Anal. 177, 231–330 (2005)

    Article  MathSciNet  Google Scholar 

  22. Kawashima, S.: Global existence and stability of solutions for discrete velocity models of the Boltzmann equation. In: Mimura, M., Nishida, T. (eds.) Recent Topics in Nonlinear PDE, In: Lect. Notes Numer. Appl. Anal., vol. 6, Kinokuniya, pp. 59–85 (1983)

  23. Kawashima, S.: Systems of a hyperbolic-parabolic composite type, with applications to the equations of magnetohydrodynamics. Doctoral Thesis, Kyoto University (1984). http://repository.kulib.kyoto-u.ac.jp/dspace/handle/2433/97887

  24. Kobayashi, T., Shibata, Y.: Decay estimates of solutions for the equations of motion of compressible viscous and heat-conductive gases in an exterior domain of \(\mathbb{R}^3\). Commun. Math. Phys. 200, 621–659 (1999)

    Article  Google Scholar 

  25. Kozono, H., Yamazaki, M.: Semilinear heat equations and the Navier–Stokes equations with distributions in new function spaces as initial data. Commun. Part. Differ. Equ. 19, 959–1014 (1994)

    Article  MathSciNet  Google Scholar 

  26. Li, D.L.: The Green’s function of the Navier–Stokes equations for gas dynamics in \(\mathbb{R}^3\). Commun. Math. Phys. 257, 579–619 (2005)

    Article  Google Scholar 

  27. Liu, T.-P., Noh, S.E.: Wave propagation for the compressible Navier-Stokes equations. J. Hyper. Differ. Equ. 12, 385–445 (2015)

    Article  MathSciNet  Google Scholar 

  28. Liu, T.-P., Wang, W.-K.: The pointwise estimates of diffusion waves for the Navier–Stokes equations in odd multi-dimensions. Commun. Math. Phys. 196, 145–173 (1998)

    Article  ADS  Google Scholar 

  29. Matsumura, A., Nishida, T.: The initial value problem for the equation of motion of compressible viscous and heat-conductive fluids. Proc. Jpn. Acad. Ser. A 55, 337–342 (1979)

    Article  MathSciNet  Google Scholar 

  30. Matsumura, A., Nishida, T.: The initial value problem for the equations of motion of viscous and heat-conductive gases. J. Math. Kyoto Univ. 20, 67–104 (1980)

    Article  MathSciNet  Google Scholar 

  31. Matsumura, A., Nishida, T.: Initial boundary value problems for the equations of motion of compressible viscous and heat conductive fluids. Commun. Math. Phys. 89, 445–464 (1983)

    Article  MathSciNet  ADS  Google Scholar 

  32. Okita, M.: Optimal decay rate for strong solutions in critical spaces to the compressible Navier–Stokes equations. J. Differ. Equ. 257, 3850–3867 (2014)

    Article  MathSciNet  ADS  Google Scholar 

  33. Sohinger, V., Strain, R.M.: The Boltzmann equation, Besov spaces, and optimal time decay rates in \(\mathbb{R}^{n}_{x}\). Adv. Math. 261, 274–332 (2014)

    Article  MathSciNet  Google Scholar 

  34. Xu, J.: A low-frequency assumption for optimal time-decay estimates to the compressible Navier–Stokes equations. Preprint (2018)

  35. Xu, J., Kawashima, S.: The optimal decay estimates on the framework of Besov spaces for generally dissipative systems. Arch. Ration. Mech. Anal. 218, 275–315 (2015)

    Article  MathSciNet  Google Scholar 

  36. Xu, J., Kawashima, S.: Frequency-localization Duhamel principle and its application to the optimal decay of dissipative systems in low dimensions. J. Differ. Equ. 261, 2670–2701 (2016)

    Article  MathSciNet  ADS  Google Scholar 

  37. Zeng, Y.: \(L^1\) asymptotic behavior of compressible isentropic viscous 1-D flow. Commun. Pure Appl. Math. 47, 1053–1082 (1994)

    Article  Google Scholar 

Download references

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Raphaël Danchin.

Ethics declarations

Conflict of interest

The authors declare that they have no conflict of interest.

Additional information

Communicated by M. Hieber

The first author has been partially supported by ANR-15-CE40-0011 and Institut Universitaire de France.

The second author is partially supported by the National Natural Science Foundation of China (11471158) and the Fundamental Research Funds for the Central Universities (NE2015005). He would like to thank Professor A. Matsumura for introducing him to the decay problem for partially parabolic equations when he visited Osaka University. He is also grateful to Professor R. Danchin for the kind hospitality when visiting the LAMA in UPEC.

Rights and permissions

Reprints and permissions

About this article

Check for updates. Verify currency and authenticity via CrossMark

Cite this article

Danchin, R., Xu, J. Optimal decay estimates in the critical \(L^{p}\) framework for flows of compressible viscous and heat-conductive gases. J. Math. Fluid Mech. 20, 1641–1665 (2018). https://doi.org/10.1007/s00021-018-0381-6

Download citation

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1007/s00021-018-0381-6

Mathematics Subject Classification

Keywords

Navigation