Nonlinear Thermal Instability in Compressible Viscous Flows Without Heat Conductivity
- 10 Downloads
Abstract
We investigate the thermal instability of a smooth equilibrium state, in which the density function satisfies Schwarzschild’s (instability) condition, to a compressible heat-conducting viscous flow without heat conductivity in the presence of a uniform gravitational field in a three-dimensional bounded domain. We show that the equilibrium state is linearly unstable by a modified variational method. Then, based on the constructed linearly unstable solutions and a local well-posedness result of classical solutions to the original nonlinear problem, we further construct the initial data of linearly unstable solutions to be the one of the original nonlinear problem, and establish an appropriate energy estimate of Gronwall-type. With the help of the established energy estimate, we finally show that the equilibrium state is nonlinearly unstable in the sense of Hadamard by a careful bootstrap instability argument.
Keywords
Compressible Navier–Stokes–Fourier equations Bénard problem thermal instability Hadamard senseMathematics Subject Classification
Primary 76E06 Secondary 76E19Preview
Unable to display preview. Download preview PDF.
References
- 1.Adams, R.A., John, J.F.F.: Sobolev Space. Academic Press, New York (2005)Google Scholar
- 2.Aye, P., Nishida, T.: Heat convection of compressible fluid. In: Fujita, H. (ed.) Recent Developments in Domain Decomposition Methods and Flow Problems, Mathematical Sciences and Applications, vol. 11, pp. 107–115. Gakkotosho, Tokyo (1998)Google Scholar
- 3.Benardand, H.: Les tourbillons cellulaires dans une nappe liquide. Rev. Gén. Sci. Pures Appl. 45, 1261-71–1309-28 (1900)Google Scholar
- 4.Cattaneo, F., Brummell, N., Toomre, J., Malagoli, A., Hurlburt, N.: Turbulent compressible convection. Astrophys. J. 370, 282–294 (1991)ADSCrossRefGoogle Scholar
- 5.Chandrasekhar, S.: An Introduction to the Study of Stellar Structures. University of Chicago Press, Chicago (1939)MATHGoogle Scholar
- 6.Chandrasekhar, S.: Hydrodynamic and Hydromagnetic Stability, The International Series of Monographs on Physics. Clarendon Press, Oxford (1961)Google Scholar
- 7.Coscia, V., Padula, M.: Nonlinear energy stability in a compressible atmosphere. Geophys. Astrophys. Fluid. Dyn. 54, 49–83 (1990)ADSMathSciNetCrossRefGoogle Scholar
- 8.Drazin, P.G., Reid, W.H.: Hydrodynamic Stability, 2nd edn. Cambridge University Press, Cambridge (2004)CrossRefMATHGoogle Scholar
- 9.Field, G.B.: Thermal instability. Astrophys. J. 142, 531–567 (1965)ADSCrossRefGoogle Scholar
- 10.Friedlander, S., Strauss, W., Vishik, M.: Nonlinear instability in an ideal fluid. Ann. Inst. Henri Poincare(C) Non Linear Anal. 14, 187–209 (1997)ADSMathSciNetCrossRefMATHGoogle Scholar
- 11.Friedlander, S., Vishik, M.: Nonlinear instability in two dimensional ideal fluids: the case of a dominant eigenvalue. Commun. Math. Phys. 243, 261–273 (2003)ADSMathSciNetCrossRefMATHGoogle Scholar
- 12.Galdi, G.P.: The rotating Bénard problem: a nonlinear energy stability analysis (Rome, 1984), Teubner, Stuttgart. In: Applications of Mathematics in Technology, pp. 79–95 (1984)Google Scholar
- 13.Galdi, G.P.: Nonlinear stability of the magnetic Bénard problem via a generalized energy method. Arch. Ration. Mech. Anal. 62(2), 167–186 (1985)CrossRefMATHGoogle Scholar
- 14.Galdi, G.P., Padula, M.: New contributions to nonlinear stability of the magnetic Bénard problem. In: Applications of Mathematics in Industry and Technology (Siena, 1988), Teubner, Stuttgart, pp. 166–178 (1989)Google Scholar
- 15.Galdi, G.P., Padula, M.: Further results in the nonlinear stability of the magnetic Bénard problem. In: Mathematical Aspects of Fluid and Plasma Dynamics (Salice Terme, 1988), Lecture Notes in Mathematics, vol. 1460, Springer, Berlin (1991)Google Scholar
- 16.Galdi, G.P., Straughan, B.: A nonlinear analysis of the stabilizing effect of rotation in the Bénard problem. Proc. R. Soc. Lond. Ser. A 402(1823), 257–283 (1985)ADSCrossRefMATHGoogle Scholar
- 17.Gough, D.O., Moore, D.R., Spiegel, E.A., Weiss, N.O.: Convective instability in a compressible atmosphere II. Astrophys. J. 206, 536–542 (1976)ADSCrossRefGoogle Scholar
- 18.Graham, E.: Numerical simulation of two-dimensional compressible convection. J. Fluid Mech. 70, 689 (1975)ADSCrossRefMATHGoogle Scholar
- 19.Guidoboni, G., Padula, M.: On the Bénard problem. Prog. Nonlinear Differ. Equ. Appl. 61, 137–148 (2005)MATHGoogle Scholar
- 20.Guo, Y., Hallstrom, C., Spirn, D.: Dynamics near unstable, interfacial fluids. Commun. Math. Phys. 270, 635–689 (2007)ADSMathSciNetCrossRefMATHGoogle Scholar
- 21.Guo, Y., Han, Y.Q.: Critical Rayleigh number in Rayleigh–Bénard convection. Quart. Appl. Math. LXVIII, 149–160 (2010)MATHGoogle Scholar
- 22.Guo, Y., Strauss, W.: Instability of periodic BGK equilibria. Commun. Pure Appl. Math. 48, 861–894 (1995)MathSciNetCrossRefMATHGoogle Scholar
- 23.Guo, Y., Tice, I.: Linear Rayleigh–Taylor instability for viscous, compressible fluids. SIAM J. Math. Anal. 42, 1688–1720 (2011)MathSciNetCrossRefMATHGoogle Scholar
- 24.Hwang, H.J., Guo, Y.: On the dynamical Rayleigh–Taylor instability. Arch. Ration. Mech. Anal. 167, 235–253 (2003)MathSciNetCrossRefMATHGoogle Scholar
- 25.Jang, J., Tice, I.: Instability theory of the Navier–Stokes–Poisson equations. Anal. PDE 6, 1121–1181 (2013)MathSciNetCrossRefMATHGoogle Scholar
- 26.Jeffreys, H.: The instability of a compressible fluid heated below. Proc. Camb. Philos. Soc. 26, 170–172 (1930)ADSCrossRefMATHGoogle Scholar
- 27.Jiang, F., Jiang, S.: On instability and stability of three-dimensional gravity flows in a bounded domain. Adv. Math. 264, 831–863 (2014)MathSciNetCrossRefMATHGoogle Scholar
- 28.Jiang, F., Jiang, S., Wang, Y.J.: On the Rayleigh–Taylor instability for the incompressible viscous magnetohydrodynamic equations. Commun. Partial Differ. Equ. 39, 399–438 (2014)MathSciNetCrossRefMATHGoogle Scholar
- 29.Joseph, D.D.: Nonlinear stability of the Boussinesq equations by the method of energy. Arch. Ration. Mech. Anal. 22, 163–184 (1966)MathSciNetCrossRefMATHGoogle Scholar
- 30.Kaniel, S., Kovetz, A.: Schwarzschild’s criterion for instability. Phys. Fluids 10, 1186–1193 (1967)ADSCrossRefMATHGoogle Scholar
- 31.Kawashima, S.: Systems of a hyperbolic-parabolic composite type, with applications to the equations of magnetohydrodynamics. Ph. D. Thesis, Kyoto University (1983)Google Scholar
- 32.Lebovitz, N.R.: On the necessity of schwarzshild’s criterion for stability. Astrophys. J. 146, 946–949 (1986)ADSCrossRefGoogle Scholar
- 33.Ma, T., Wang, S.: Dynamic bifurcation and stability in the Rayleigh–Bénard convection. Commun. Math. Sci. 2, 159–183 (2004)MathSciNetCrossRefMATHGoogle Scholar
- 34.Matsumura, A., Nishida, T.: The initial value problem for the equation of compressible viscous and heat-conductive fluids. Proc. Jpn. Acad. Ser A 55, 337–342 (1979)MathSciNetCrossRefMATHGoogle Scholar
- 35.Matsumura, A., Nishida, T.: Initial-boundary value problems for the equations of motion of general fluids, computing methods in applied sciences and engineering. J. Math. Kyoto. Univ. V (Versailles, 1981) 20, 389–406 (1982)Google Scholar
- 36.Matsumura, A., Nishida, T.: Initial boundary value problems for the equations of motion of compressible viscous and heat conductive fluids. Commun. Math. Phys. 89, 445–464 (1983)ADSMathSciNetCrossRefMATHGoogle Scholar
- 37.Nishida, T., Padula, M., Teramoto, Y.: Heat convection of compressible viscous fluids. I. J. Math. Fluid Mech. 15, 525–536 (2012)MathSciNetCrossRefMATHGoogle Scholar
- 38.Nishida, T., Padula, M., Teramoto, Y.: Heat convection of compressible viscous fluids. II. J. Math. Fluid Mech. 15, 689–700 (2013)ADSMathSciNetCrossRefMATHGoogle Scholar
- 39.Novotnỳ, A., Straškraba, I.: Introduction to the Mathematical Theory of Compressible Flow. Oxford University Press, Oxford (2004)MATHGoogle Scholar
- 40.Padula, M., Bollettmo, U.M.I.: Nonlinear energy stability for the compressible Bénard problem. Boll. Un. Mat. Ital. B 5B, 581–602 (1986)MATHGoogle Scholar
- 41.Rayleigh, L.: On convective currants in a horizontal layer of fluid when the higher termperature is on the under side. Philos. Mag. 32, 529–546 (1916)CrossRefMATHGoogle Scholar
- 42.Rosencrans, S.: On Schwarzschild’s criterion. SIAM J. Appl. Math. 17, 231–239 (1969)CrossRefMATHGoogle Scholar
- 43.Rumford, C.: Of the Propagation of Heat in Fluids, Complete Works, vol. 1, p. 239. American Academy of Arts and Sciences, Boston (1870)Google Scholar
- 44.Schwarzschild, K.: Über das gleichgewicht der sonnenatmosphäre. Nachr. Kgl. Ges. Wiss. Göttingen Math. Phys. Klasse 1906, 41–53 (1906)MATHGoogle Scholar
- 45.Schwarzschild, M.: Convection in stars. Astrophys. J. 134(1), 1–8 (1961)ADSMathSciNetCrossRefGoogle Scholar
- 46.Spiegel, E.A.: Convective instability in a compressible atmosphere I. Astrophys. J. 141, 1068–1090 (1965)ADSMathSciNetCrossRefGoogle Scholar
- 47.Thompson, J.: On a changing tesselated.structure in certain liquids. Pro. Phil. Soc. Glasg. 13, 464–468 (1882)Google Scholar
- 48.Unno, W., Kato, S., Makita, M.: Convective instability in polytropic atmosphere. I. Pub. Astr. Soc. Jpn. 12(2), 192–202 (1960)ADSGoogle Scholar
- 49.Xi, X.Y., Guo, B.L., Xie, B.Q., Fang, S.M.: Nonlinear thermal instability in the magnetohydrodynamics problem without heat conductivity. J. Differ. Equ. 263, 6635–6683 (2017)ADSMathSciNetCrossRefMATHGoogle Scholar