Global Well-Posedness and Temporal Decay Estimates for the 3D Nematic Liquid Crystal Flows

  • Qiao Liu


In this paper, we investigate global well-posedness and large time behavior of the Cauchy problem for the 3D incompressible nematic liquid crystal flows. By using the advantage of suitable weighted function, we show that for any initial data \((u_{0},d_{0}-\overline{d}_{0})\) in critical Besov spaces \(\dot{B}^{\frac{3}{p}-1}_{p,1}(\mathbb {R}^{3})\times \dot{B}^{\frac{3}{q}}_{q,1}(\mathbb {R}^{3})\) with \(1< p, q<\infty \) and \( -\inf \{\frac{1}{3},\frac{1}{2p}\}\le \frac{1}{q}-\frac{1}{p}\le \frac{1}{3}\), if the initial orientation \(d_{0}-\overline{d}_{0}\) and a certain nonlinear function of initial velocity \(u_{0}\) are small enough, then there exists a global-in-time solution to the nematic liquid crystal flows. We also give an example of initial velocity satisfying that nonlinear smallness condition, but each component of its norm may be arbitrarily large. Moreover, if we further assume that \((u_{0},d_{0}-\overline{d}_{0})\in \dot{B}^{-s}_{r,\infty }(\mathbb {R}^{3})\times \dot{B}^{-s+1}_{r,\infty }(\mathbb {R}^{3})\) with \(1<r\le \inf \{p,q\}\) and \( \sup \{0,1-\frac{3}{r}\}\le s<\inf \{4-\frac{3}{r},1+\frac{3}{p},1+\frac{3}{q}\}\), then the global-in-time strong solution (ud) to the nematic liquid crystal flows admits the following temporal decay rate
$$\begin{aligned}&\Vert {u}(t)\Vert _{\dot{B}^{\ell }_{p,1}} \le C(1+t)^{-\frac{\ell +s}{2}-\frac{3}{2}\left( \frac{1}{r}-\frac{1}{p}\right) } \quad \text { for all } -s-3\left( \frac{1}{r}-\frac{1}{p}\right)<\ell \le \frac{3}{p}-1;\\&\Vert {d}(t)-\overline{d}_{0}\Vert _{\dot{B}^{\ell }_{q,1}} \le C(1+t)^{-\frac{\ell +s+1}{2}-\frac{3}{2}\left( \frac{1}{r}-\frac{1}{q}\right) } \quad \text { for all } -s+1-3\left( \frac{1}{r}-\frac{1}{q}\right) <\ell \le \frac{3}{q}. \end{aligned}$$
Here, \(\overline{{d}}_{0}\in \mathbb {S}^{2}\) is a constant unit vector.


Nematic liquid crystal flows Global well-posedness Temporal decay estimate Besov space 

Mathematics Subject Classification

76A15 35B65 35Q35 


Unable to display preview. Download preview PDF.

Unable to display preview. Download preview PDF.


  1. 1.
    Bahouri, H., Chemin, J., Danchin, R.: Fourier Analysis and Nonlinear Partial Differential Equations. Springer, London, New York (2011)CrossRefzbMATHGoogle Scholar
  2. 2.
    Caffarelli, L., Kohn, R., Nirenberg, L.: Partial regularity of suitable weak solutions of the Navier–Stokes equations. Commun. Pure Appl. Math. 35, 771–831 (1982)ADSMathSciNetCrossRefzbMATHGoogle Scholar
  3. 3.
    Chemin, J., Gallagher, I.: Well-posedness and stability results for the Navier–Stokes equations in \(\mathbb{R}^{3}\). Ann. Inst. H. Poincaré Anal. Non Linéaie 26, 599–624 (2009)ADSCrossRefzbMATHGoogle Scholar
  4. 4.
    Danchin, R.: Local theory in critical spaces for compressible viscous and heat-conductive gases. Commun. Partial Differ. Equ. 26, 1183–1233 (2001)MathSciNetCrossRefzbMATHGoogle Scholar
  5. 5.
    Du, Y., Wang, K.: Space–time regularity of the Koch&Tataru solutions to the liquid crystal equations. SIAM J. Math. Anal. 45(6), 3838–3853 (2013)MathSciNetCrossRefzbMATHGoogle Scholar
  6. 6.
    Ericksen, J.L.: Hydrostatic theory of liquid crystal. Arch. Ration. Mech. Anal. 9, 371–378 (1962)MathSciNetzbMATHGoogle Scholar
  7. 7.
    Gui, G., Zhang, P.: Stability to the global large solutions of 3-D Navier–Stokes equations. Adv. in Math. 225, 1248–1284 (2010)MathSciNetCrossRefzbMATHGoogle Scholar
  8. 8.
    Hineman, J., Wang, C.: Well-posedness of nematic liquid crystal flow in \(L^{3}_{loc}(\mathbb{R}^{3})\). Arch. Ration. Mech. Anal. 210, 177–218 (2013)MathSciNetCrossRefzbMATHGoogle Scholar
  9. 9.
    Hong, M.: Global existence of solutions of the simplified Ericksen–Leslie system in dimension two. Calc. Var. Partial Differ. Equ. 40, 15–36 (2011)MathSciNetCrossRefzbMATHGoogle Scholar
  10. 10.
    Hu, X., Wang, D.: Global solution to the three-dimensional incompressible flow of liquid crystals. Commun. Math. Phys. 296, 861–880 (2010)ADSMathSciNetCrossRefzbMATHGoogle Scholar
  11. 11.
    Huang, T., Wang, C.: Blow up criterion for nematic liquid crystal flows. Commun. Partial Differ. Equ. 37, 875–884 (2012)MathSciNetCrossRefzbMATHGoogle Scholar
  12. 12.
    Leslie, F.: Theory of flow phenomenum in liquid crystals. In: The Theory of Liquid Crystals, vol. 4, pp. 1–81. Academic, London, New York (1979)Google Scholar
  13. 13.
    Lemarié-Rieusset, P.G.: Recent Developments in the Navier–Stokes Problem. Chapman and Hall/CRC, Boca Raton (2002)CrossRefzbMATHGoogle Scholar
  14. 14.
    Li, X., Wang, D.: Global solution to the incompressible flow of liquid crystal. J. Differ. Equ. 252, 745–767 (2012)ADSMathSciNetCrossRefzbMATHGoogle Scholar
  15. 15.
    Lin, F., Lin, J., Wang, C.: Liquid crystal flow in two dimensions. Arch. Ration. Mech. Anal. 197, 297–336 (2010)MathSciNetCrossRefzbMATHGoogle Scholar
  16. 16.
    Lin, F., Liu, C.: Nonparabolic dissipative systems modeling the flow of liquid crystals. Commun. Pure Appl. Math. 48, 501–537 (1995)MathSciNetCrossRefzbMATHGoogle Scholar
  17. 17.
    Lin, F., Liu, C.: Partial regularities of the nonlinear dissipative systems modeling the flow of liquid crystals. Discrete Contin. Dyn. Syst. A 2, 1–23 (1996)Google Scholar
  18. 18.
    Lin, F., Wang, C.: On the uniqueness of heat flow of harmonic maps and hydrodynamic flow of nematic liquid crystals. Chin. Ann. Math. Ser. B 31, 921–938 (2010)MathSciNetCrossRefzbMATHGoogle Scholar
  19. 19.
    Lin, F., Wang, C.: Global existence of weak solutions of the nematic liquid crystal flow in dimension three. Commun. Pure Appl. Math. (2015). Google Scholar
  20. 20.
    Liu, Q.: Space-time derivative estimates of the Koch-Tataru solutios to the nematic liquid crystal system in Besov spaces. J. Differ. Equ. 258, 4368–4397 (2015)ADSCrossRefzbMATHGoogle Scholar
  21. 21.
    Liu, Q.: On the temporal decay of solutions to the two-dimensional nematic liquid crystal flows. Math. Nachr. (2015).
  22. 22.
    Liu, Q., Zhang, T., Zhao, J.: Well-poseness for the 3D incompressible nematic nematic liquid crystal system in the critical \(L^{p}\) framework. Discrete Contin. Dyn. Syst. 36, 371–402 (2016)MathSciNetCrossRefzbMATHGoogle Scholar
  23. 23.
    Liu, S., Xu, X.: Global existence and temporal decay for the nematic liquid crystal flows. J. Math. Anal. Appl. 426, 228–246 (2015)MathSciNetCrossRefzbMATHGoogle Scholar
  24. 24.
    Paicu, M., Zhang, P.: Global solutions to the 3-D incompressible inhomogeneous Navier–Stokes system. J. Funct. Anal. 262, 3556–3584 (2012)MathSciNetCrossRefzbMATHGoogle Scholar
  25. 25.
    Schonbek, M.: \(L^{2}\) decay for weak solutions of the Navier–Stokes equations. Arch. Ration. Mech. Anal. 88, 209–222 (1985)CrossRefzbMATHGoogle Scholar
  26. 26.
    Schonbek, M.: Large time behaviour of solutions to the Navier–Stokes equations. Commun. Partial Differ. Equ. 11, 733–763 (1996)MathSciNetCrossRefzbMATHGoogle Scholar
  27. 27.
    Stewart, I.: The static and dynamic continuum theory of liquid crystals. Taylor & Francis, London, New York (2004)Google Scholar
  28. 28.
    Sun, H., Liu, C.: On energetic variational approaches in modeling the nematic liquid crystal flows. Discrete Contin. Dyn. Syst. A 23, 455–475 (2009)MathSciNetCrossRefzbMATHGoogle Scholar
  29. 29.
    Wang, C.: Well-posedness for the heat flow of harmonic maps and the liquid crystal flow with rough initial data. Arch. Ration. Mech. Anal. 200, 1–19 (2011)ADSMathSciNetCrossRefzbMATHGoogle Scholar
  30. 30.
    Wen, H., Ding, S.: Solutions of incompressible hydrodynamic flow of liquid crystals. Nonlinear Anal. Real World Appl. 12, 1510–1531 (2011)MathSciNetCrossRefzbMATHGoogle Scholar
  31. 31.
    Xu, X., Zhang, Z.: Global regularity and uniqueness of weak solution for the 2-D liquid crystal flows. J. Differ. Equ. 252, 1169–1181 (2012)ADSMathSciNetCrossRefzbMATHGoogle Scholar
  32. 32.
    Zhai, X., Yin, Z.: On some large global solutions to the incompressible inhomogeneous nematic liquid crystal flows. PreprintGoogle Scholar
  33. 33.
    Zhang, T.: Global wellposedness problem for the 3-D incompressible anisotropic Navier–Stokes equations in an anisotropic space. Commun. Math. Phys. 287, 211–224 (2009)ADSCrossRefzbMATHGoogle Scholar

Copyright information

© Springer International Publishing AG, part of Springer Nature 2018

Authors and Affiliations

  1. 1.Key Laboratory of High Performance Computing and Stochastic Information Processing (HPCSIP) (Ministry of Education of China)College of Mathematics and Computer Science, Hunan Normal UniversityChangshaPeople’s Republic of China

Personalised recommendations