Skip to main content
Log in

Analytic Current–Vortex Sheets in Incompressible Magnetohydrodynamics

  • Published:
Journal of Mathematical Fluid Mechanics Aims and scope Submit manuscript

Abstract

In this paper, we address the problem of current–vortex sheets in ideal incompressible magnetohydrodynamics. More precisely, we prove a local-in-time existence and uniqueness result for analytic initial data using a Cauchy–Kowalevskaya theorem.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Similar content being viewed by others

References

  1. Adams, R.A., Fournier, J.J.F.: Sobolev Spaces, Pure and Applied Mathematics, vol. 140, 2nd edn. Academic Press, Amsterdam (2003)

    Google Scholar 

  2. Alì, G., Hunter, J.K.: Nonlinear surface waves on a tangential discontinuity in magnetohydrodynamics. Quart. Appl. Math. 61(3), 451–474 (2003)

    Article  MathSciNet  MATH  Google Scholar 

  3. Alinhac, S., Métivier, G.: Propagation de l’analyticité locale pour les solutions de l’équation d’Euler. Arch. Ration. Mech. Anal. 92(4), 287–296 (1986)

    Article  MATH  Google Scholar 

  4. Ambrose, D.M., Masmoudi, N.: Well-posedness of 3D vortex sheets with surface tension. Commun. Math. Sci. 5(2), 391–430 (2007)

    Article  MathSciNet  MATH  Google Scholar 

  5. Axford, W.I.: Note on a problem of magnetohydrodynamic stability. Can. J. Phys. 40(5), 654–656 (1962)

    Article  ADS  MATH  Google Scholar 

  6. Bardos, C., Benachour, S.: Domaine d’analycité des solutions de l’équation d’Euler dans un ouvert de \(R^{n}\). Ann. Scuola Norm. Sup. Pisa Cl. Sci. 4(4), 647–687 (1977)

    MathSciNet  MATH  Google Scholar 

  7. Baouendi, M.S., Goulaouic, C.: Le théorème de Nishida pour le problème de Cauchy abstrait par une méthode de point fixe. In: Équations aux dérivées partielles (Proceedings of Conference Saint-Jean-de-Monts, 1977), Lecture Notes in Mathematics, vol. 660, pp. 1–8. Springer, Berlin (1978)

  8. Benzoni-Gavage, S., Serre, D.: Multidimensional Hyperbolic Partial Differential Equations: First-Order Systems and Applications. Oxford University Press, Oxford (2007)

    MATH  Google Scholar 

  9. Brezis, H.: Analyse fonctionnelle. Collection Mathématiques Appliquées pour la Maîtrise. [Collection of Applied Mathematics for the Master’s Degree]. Masson, Paris, (1983). Théorie et applications. [Theory and applications]

  10. Blokhin, A., Trakhinin, Y.: Stability of Strong Discontinuities in Fluids and MHD. In: Friedlander, S., Serre, D. (eds.) Handbook of Mathematical Fluid Dynamics, vol. 1, pp. 545–652. Elsevier, Amsterdam (2002)

    Chapter  Google Scholar 

  11. Chandrasekhar, S.: Hydrodynamic and Hydromagnetic Stability. The International Series of Monographs on Physics. Clarendon Press, Oxford (1961)

    Google Scholar 

  12. Coulombel, J.-F., Morando, A., Secchi, P., Trebeschi, P.: A priori estimates for 3D incompressible current–vortex sheets. Commun. Math. Phys. 311(1), 247–275 (2012)

    Article  ADS  MathSciNet  MATH  Google Scholar 

  13. Chen, G.-Q., Wang, Y.-G.: Existence and stability of compressible current-vortex sheets in three-dimensional magnetohydrodynamics. Arch. Ration. Mech. Anal. 187(3), 369–408 (2008)

    Article  MathSciNet  MATH  Google Scholar 

  14. Delort, J.-M.: Existence de nappes de tourbillon en dimension deux. J. Am. Math. Soc. 4(3), 553–586 (1991)

    Article  MathSciNet  MATH  Google Scholar 

  15. Evans, L.C.: Partial Differential Equations. Graduate Studies in Mathematics, vol. 19. American Mathematical Society, Providence (1998)

    Google Scholar 

  16. Kukavica, I., Vicol, V.: On the radius of analyticity of solutions to the three-dimensional Euler equations. Proc. Am. Math. Soc. 137(2), 669–677 (2009)

    Article  MathSciNet  MATH  Google Scholar 

  17. Kukavica, I., Vicol, V.: The domain of analyticity of solutions to the three-dimensional Euler equations in a half space. Discrete Contin. Dyn. Syst. 29(1), 285–303 (2011)

    MathSciNet  MATH  Google Scholar 

  18. Kukavica, I., Vicol, V.: On the analyticity and Gevrey-class regularity up to the boundary for the Euler equations. Nonlinearity 24(3), 765–796 (2011)

    Article  ADS  MathSciNet  MATH  Google Scholar 

  19. Lannes, D.: Well-posedness of the water-waves equations. J. Am. Math. Soc. 18(3), 605–654 (2005)

    Article  MathSciNet  MATH  Google Scholar 

  20. Lannes, D.: The Water Waves Problem: Mathematical Analysis and Asymptotics, vol. 188. American Mathematical Society, Providence (2013)

    MATH  Google Scholar 

  21. Lebeau, G.: Régularité du problème de Kelvin-Helmholtz pour l’équation d’Euler 2d. ESAIM Control Optim. Calc. Var. 8, 801–825 (2002). A tribute to J. L. Lions

    Article  MathSciNet  MATH  Google Scholar 

  22. Levermore, C.D., Oliver, M.: Analyticity of solutions for a generalized Euler equation. J. Differ. Equ. 133(2), 321–339 (1997)

    Article  ADS  MathSciNet  MATH  Google Scholar 

  23. Nirenberg, L.: An abstract form of the nonlinear Cauchy–Kowalewski theorem. J. Differ. Geom. 6, 561–576 (1972)

    Article  MathSciNet  MATH  Google Scholar 

  24. Nishida, T.: A note on a theorem of Nirenberg. J. Differ. Geom. 12(4), 629–633 (1978). 1977

    Article  MathSciNet  MATH  Google Scholar 

  25. Sedenko, V.I.: Solvability of initial-boundary value problems for the Euler equations of flows of an ideal incompressible nonhomogeneous fluid and an ideal barotropic fluid that are bounded by free surfaces. Math. Sb. 185(11), 57–78 (1994)

    MathSciNet  MATH  Google Scholar 

  26. Sulem, C., Sulem, P.-L., Bardos, C., Frisch, U.: Finite time analyticity for the two- and three-dimensional Kelvin–Helmholtz instability. Commun. Math. Phys. 80(4), 485–516 (1981)

    Article  ADS  MathSciNet  MATH  Google Scholar 

  27. Sun, Y., Wang, W., Zhang, Z.: Nonlinear stability of current-vortex sheet to the incompressible MHD equations. arXiv e-prints (2015)

  28. Syrovatskiĭ, S.I.: The stability of tangential discontinuities in a magnetohydrodynamic medium. Zurnal Eksper. Teoret. Fiz. 24, 622–629 (1953)

    Google Scholar 

  29. Trakhinin, Y.: On the existence of incompressible current–vortex sheets: study of a linearized free boundary value problem. Math. Methods Appl. Sci. 28(8), 917–945 (2005)

    Article  ADS  MathSciNet  MATH  Google Scholar 

  30. Trakhinin, Y.: The existence of current–vortex sheets in ideal compressible magnetohydrodynamics. Arch. Ration. Mech. Anal. 191(2), 245–310 (2009)

    Article  MathSciNet  MATH  Google Scholar 

  31. Triebel, H.: Theory of function spaces. Modern Birkhäuser Classics. Birkhäuser/Springer Basel AG, Basel, (2010). Reprint of 1983 edition [MR0730762], Also published in 1983 by Birkhäuser Verlag [MR0781540]

  32. Zuily, C.: Éléments de distributions et d’équations aux dérivées partielles : cours et problèmes résolus. Dunod, Sciences sup (2002)

Download references

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Olivier Pierre.

Ethics declarations

Conflict of interest

The author declares that he has no conflict of interest.

Additional information

Communicated by G.P. Galdi.

Rights and permissions

Reprints and permissions

About this article

Check for updates. Verify currency and authenticity via CrossMark

Cite this article

Pierre, O. Analytic Current–Vortex Sheets in Incompressible Magnetohydrodynamics. J. Math. Fluid Mech. 20, 1269–1315 (2018). https://doi.org/10.1007/s00021-018-0366-5

Download citation

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1007/s00021-018-0366-5

Keywords

Navigation