Skip to main content
Log in

On Weighted Estimates for the Stokes Flows, with Application to the Navier–Stokes Equations

  • Published:
Journal of Mathematical Fluid Mechanics Aims and scope Submit manuscript

Abstract

Weighted estimates on the Stokes flows are given by means of the Stokes solution formula in the half space, which can be regarded as a complement and improvement on the previous known results. There are two main difficulties: in weighted cases, usual \(L^q-L^r\) estimates for the Stokes flows do not work any more, and the projection operator becomes unbounded possibly. Finally, as an application, employing these weighted estimates on the Stokes solution, we establish some weighted decay results for the Navier–Stokes flows.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Institutional subscriptions

Similar content being viewed by others

References

  1. Bae, H.: Temporal decays in \(L^1\) and \(L^\infty \) for the Stokes flow. J. Differ. Equ. 222, 1–20 (2006)

    Article  ADS  MATH  Google Scholar 

  2. Bae, H.: Temporal and spatial decays for the Stokes flow. J. Math. Fluid Mech. 10, 503–530 (2008)

    Article  ADS  MathSciNet  MATH  Google Scholar 

  3. Bae, H.: Analyticity and asymptotics for the Stokes solutions in a weighted space. J. Math. Anal. Appl. 269, 149–171 (2002)

    Article  MathSciNet  MATH  Google Scholar 

  4. Bae, H., Choe, H.: Decay rate for the incompressible flows in half spaces. Math. Z. 238, 799–816 (2001)

    Article  MathSciNet  MATH  Google Scholar 

  5. Bae, H., Jin, B.: Asymptotic behavior for the Navier–Stokes equations in 2D exterior domains. J. Funct. Anal. 240, 508–529 (2006)

    Article  MathSciNet  MATH  Google Scholar 

  6. Bae, H., Jin, B.: Temporal and spatial decay rates of Navier–Stokes solutions in exterior domains. Bull. Korean Math. Soc. 44, 547–567 (2007)

    Article  MathSciNet  MATH  Google Scholar 

  7. Bae, H., Jin, B.: Upper and lower bounds of temporal and spatial decays for the Navier–Stokes equations. J. Differ. Equ. 209, 365–391 (2005)

    Article  ADS  MathSciNet  MATH  Google Scholar 

  8. Bae, H., Jin, B.: Temporal and spatial decays for the Navier–Stokes equations. Proc. R. Soc. Edinb. Sect. A 135, 461–477 (2005)

    Article  MathSciNet  MATH  Google Scholar 

  9. Bae, H., Jin, B.: Existence of strong mild solution of the Navier–Stokes equations in the half space with nondecaying initial data. J. Korean Math. Soc. 49, 113–138 (2012)

    Article  MathSciNet  MATH  Google Scholar 

  10. Brandolese, L.: On the localization of symmetric and asymmetric solutions of the Navier-Stokes equations in \(R^n\). C. R. Acad. Sci. Paris S’er. I Math 332, 125–130 (2001)

    Article  ADS  MathSciNet  MATH  Google Scholar 

  11. Brandolese, L.: Space-time decay of Navier–Stokes flows invariant under rotations. Math. Ann. 329, 685–706 (2004)

    Article  MathSciNet  MATH  Google Scholar 

  12. Brandolese, L., Vigneron, F.: New asymptotic profiles of nonstationary solutions of the Navier–Stokes system. J. Math. Pures Appl. 88, 64–86 (2007)

    Article  MathSciNet  MATH  Google Scholar 

  13. Borchers, W., Miyakawa, T.: \(L^2\) decay for the Navier–Stokes flow in half spaces. Math. Ann. 282, 139–155 (1988)

    Article  MathSciNet  MATH  Google Scholar 

  14. Caffarelli, L., Kohn, R., Nirenberg, L.: Partial regularity of suitable weak solutions of the Navier–Stokes equations. Comm. Pure. Appl. Math. 35, 771–831 (1982)

    Article  ADS  MathSciNet  MATH  Google Scholar 

  15. Chae, D.: Conditions on the pressure for vanishing velocity in the incompressible fluid flows in \(R^N\). Commun. Partial Differ. Equ. 37, 1445–1455 (2012)

    Article  MATH  Google Scholar 

  16. Chae, D.: On the Liouville type theorems with weights for the Navier–Stokes equations and Euler equations. Differ. Integral Equ. 25, 403–416 (2012)

    MathSciNet  MATH  Google Scholar 

  17. Chae, D.: Liouville type theorems for the Euler and the Navier–Stokes equations. Adv. Math. 228, 2855–2868 (2011)

    Article  MathSciNet  MATH  Google Scholar 

  18. Chae, D.: On the regularity conditions of suitable weak solutions of the 3D Navier–Stokes equations. J. Math. Fluid Mech. 12, 171–180 (2010)

    Article  ADS  MathSciNet  MATH  Google Scholar 

  19. Chae, D.: On the a priori estimates for the Euler, the Navier–Stokes and the quasi-geostrophic equations. Adv. Math. 221, 1678–1702 (2009)

    Article  MathSciNet  MATH  Google Scholar 

  20. Chang, T., Jin, B.: Notes on the space-time decay rate of the Stokes flows in the half space. J. Differ. Equ. 263, 240–263 (2017)

    Article  ADS  MathSciNet  MATH  Google Scholar 

  21. Frohlich, A.: Solutions of the Navier–Stokes initial value problem in weighted \(L^q\)-spaces. Math. Nachr. 269/270, 150–166 (2004)

    Article  MATH  Google Scholar 

  22. Fujigaki, Y., Miyakawa, T.: Asymptotic profiles of non stationary incompressible Navier–Stokes flows in the half-space. Methods Appl. Anal. 8, 121–158 (2001)

    MathSciNet  MATH  Google Scholar 

  23. Han, P.: Weighted decay properties for the incompressible Stokes flow and Navier–Stokes equations in a half space. J. Differ. Equ. 253, 1744–1778 (2012)

    Article  ADS  MathSciNet  MATH  Google Scholar 

  24. Han, P.: Asymptotic behavior for the Stokes flow and Navier–Stokes equations in half spaces. J. Differ. Equ. 249, 1817–1852 (2010)

    Article  ADS  MathSciNet  MATH  Google Scholar 

  25. Han, P.: Weighted decay results for the nonstationary Stokes flow and Navier–Stokes equations in half spaces. J. Math. Fluid Mech. 17, 599–626 (2015)

    Article  ADS  MathSciNet  MATH  Google Scholar 

  26. Han, P.: Long-time behavior for the nonstationary Navier–Stokes flows in \(L^1\). J. Funct. Anal. 266, 1511–1546 (2014)

    Article  MathSciNet  MATH  Google Scholar 

  27. Han, P.: Large time behavior for the nonstationary Navier–Stokes flows in the half-space. Adv. Math. 288, 1–58 (2016)

    Article  MathSciNet  MATH  Google Scholar 

  28. Han, P.: Weighted spatial decay rates for the Navier–Stokes flows in a half space. Proc. R. Soc. Edinb. Sect. A 144, 491–510 (2014)

    Article  MathSciNet  MATH  Google Scholar 

  29. He, C., Wang, L.: Weighted \(L^p-\)estimates for Stokes flow in \(\mathbb{R}^n_+\) with applications to the non-stationary Navier–Stokes flow. Sci. China Math. 54, 573–586 (2011)

    Article  MathSciNet  MATH  Google Scholar 

  30. Kobayashi, T., Kubo, T.: Weighted \(L^p-L^q\) estimates of Stokes semigroup in half-space and its application to the Navier–Stokes equations. In: Recent Developments of Mathematical Fluid Mechanics, pp. 337-349, Adv. Math. Fluid Mech., Birkh\(\ddot{a}\)user/Springer, Basel (2016)

  31. Kobayashi, T., Kubo, T.: Weighted \(L^p\)-theory for the Stokes resolvent in some unbounded domains. Tsukuba J. Math. 37, 179–205 (2013)

    Article  MathSciNet  MATH  Google Scholar 

  32. Lin, F.: A new proof of the Caffarelli–Kohn–Nirenberg theorem. Commun. Pure Appl. Math. 51, 241–257 (1998)

    Article  MathSciNet  MATH  Google Scholar 

  33. Jin, B.: Weighted \(L^q-L^1\) estimate of the Stokes flow in the half space. Nonlinear Anal. 72, 1031–1043 (2010)

    Article  MathSciNet  MATH  Google Scholar 

  34. Jin, B.: Spatial and temporal decay estimate of the Stokes flow of weighted \(L^1\) initial data in the half space. Nonlinear Anal. 73, 1394–1407 (2010)

    Article  MathSciNet  MATH  Google Scholar 

  35. Schonbek, M.E.: \(L^2\) decay for weak solutions of the Navier–Stokes equations. Arch. Ration. Mech. Anal. 88, 209–222 (1985)

    Article  MATH  Google Scholar 

  36. Schonbek, M.E.: Lower bounds of rates of decay for solutions to the Navier–Stokes equations. J. Am. Math. Soc. 4, 423–449 (1991)

    Article  MathSciNet  MATH  Google Scholar 

  37. Schonbek, M.E.: Asymptotic behavior of solutions to the three-dimensional Navier–Stokes equations. Indiana Univ. Math. J. 41, 809–823 (1992)

    Article  MathSciNet  MATH  Google Scholar 

  38. Schonbek, M.E.: Large time behaviour of solutions to the Navier–Stokes equations in \(H^m\) spaces. Commun. Partial Differ. Equ. 20, 103–117 (1995)

    Article  MATH  Google Scholar 

  39. Schonbek, M.E.: The Fourier Splitting Method. Advances in Geometric Analysis and Continuum Mechanics. Int. Press, Cambridge, Stanford, CA (1995)

    Google Scholar 

  40. Schonbek, M.E.: Total variation decay of solutions to the Navier–Stokes equations. Methods Appl. Anal. 7, 555–564 (2000)

    MathSciNet  MATH  Google Scholar 

  41. Solonnikov, V.A.: Estimates for solutions of the nonstationary Stokes problem in anisotropic Sobolev spaces and estimates for the resolvent of the Stokes operator. Usp. Mat. Nauk. 58, 123–156 (2003)

    Article  MathSciNet  Google Scholar 

  42. Solonnikov, V.A.: On nonstationary Stokes problem and Navier–Stokes problem in a half-space with initial data nondecreasing at infinity. J. Math. Sci. 114, 1726–1740 (2003)

    Article  MathSciNet  MATH  Google Scholar 

  43. Stein, E.S.: Note on singular integrals. Proc. Am. Math. Soc. 8, 250–254 (1957)

    Article  MathSciNet  MATH  Google Scholar 

  44. Stein, E.S., Weiss, G.: Fractional integrals on \(n\)-dimensional Euclidean space. J. Math. Mech. 7, 503–514 (1958)

    MathSciNet  MATH  Google Scholar 

  45. Ukai, S.: A solution formula for the Stokes equation in \({\mathbb{R}}^N\). Commun. Pure Appl. Math. XL, 611–621 (1987)

    Article  MathSciNet  MATH  Google Scholar 

Download references

Acknowledgements

The author expresses sincere thanks to the anonymous referees for many helpful suggestions and kind comments. This work was supported by NSFC under Grant No. 11471322; and NSFC-NRF under Grant No. 11611540331; supported by Key Laboratory of RCSDS, CAS (No. 2008DP173182); supported by Youth Innovation Promotion Association of the Chinese Academy of Sciences.

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Pigong Han.

Ethics declarations

Conflict of interest

The author declares that the work described in the above article complied with the ethical standards, has also not been submitted elsewhere for publication, in whole or in part. Moreover, there is no financial or competing interests to disclose in relation to this work.

Additional information

Communicated by D. Chae

Rights and permissions

Reprints and permissions

About this article

Check for updates. Verify currency and authenticity via CrossMark

Cite this article

Han, P. On Weighted Estimates for the Stokes Flows, with Application to the Navier–Stokes Equations. J. Math. Fluid Mech. 20, 1155–1172 (2018). https://doi.org/10.1007/s00021-018-0360-y

Download citation

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1007/s00021-018-0360-y

Keywords

Mathematics Subject Classification

Navigation