A Stationary One-Equation Turbulent Model with Applications in Porous Media

Abstract

A one-equation turbulent model is studied in this work in the steady-state and with homogeneous Dirichlet boundary conditions. The considered problem generalizes two distinct approaches that are being used with success in the applications to model different flows through porous media. The novelty of the problem relies on the consideration of the classical Navier–Stokes equations with a feedback forces field, whose presence in the momentum equation will affect the equation for the turbulent kinetic energy (TKE) with a new term that is known as the production and represents the rate at which TKE is transferred from the mean flow to the turbulence. By assuming suitable growth conditions on the feedback forces field and on the function that describes the rate of dissipation of the TKE, as well as on the production term, we will prove the existence of the velocity field and of the TKE. The proof of their uniqueness is made by assuming monotonicity conditions on the feedback forces field and on the turbulent dissipation function, together with a condition of Lipschitz continuity on the production term. The existence of a unique pressure, will follow by the application of a standard version of de Rham’s lemma.

This is a preview of subscription content, log in to check access.

References

  1. 1.

    Aubin, T.: Espaces de Sobolev sur les variétés Riemanniennes. Bull. Sci. Math. 100, 149–173 (1976)

    MathSciNet  MATH  Google Scholar 

  2. 2.

    Antohe, B.V., Lage, J.L.: A general two-equation macroscopic turbulence model for incompressible flow in porous media. Int. J. Heat Mass Transf. 40, 3013–3024 (1997)

    Article  MATH  Google Scholar 

  3. 3.

    Avila, M., Folch, A., Houzeaux, G., Eguzkitza, B., Prietob, L., Cabezón, D.: A parallel CFD model for wind farms. Procedia Comput. Sci. 18, 2157–2166 (2013)

    Article  Google Scholar 

  4. 4.

    Antontsev, S.N., Díaz, J.I., de Oliveira, H.B.: Stopping a viscous fluid by a feedback dissipative field: I. The stationary Stokes problem. J. Math. Fluid Mech. 6, 439–461 (2004)

    ADS  MathSciNet  Article  MATH  Google Scholar 

  5. 5.

    Antontsev, S.N., Díaz, J.I., de Oliveira, H.B.: Stopping a viscous fluid by a feedback dissipative field: II. The stationary Navier–Stokes problem. Rend. Mat. Acc. Lincei 15(s. 9), 257–270 (2004)

    MathSciNet  MATH  Google Scholar 

  6. 6.

    Antontsev, S.N., Díaz, J.I., de Oliveira, H.B.: Stopping a viscous fluid by a feedback dissipative field: thermal effects without phase changing. In: Progr. Nonlinear Differential Equations Appl., vol. 61, pp. 1–14. Birkhäuser (2005)

  7. 7.

    Boccardo, L., Gallouët, T.: Strongly nonlinear elliptic equations having natural growth terms and \({\rm L}^1\) data. Nonlinear Anal. 19(6), 573–579 (1992)

    MathSciNet  Article  MATH  Google Scholar 

  8. 8.

    Brossier, F., Lewandowski, R.: On a first order closure system modelizing turbulent flows. Math. Model. Numer. Anal. 36, 345–372 (2002)

    Article  MATH  Google Scholar 

  9. 9.

    Chacón-Rebollo, T., Lewandowski, R.: Mathematical and Numerical Foundations of Turbulence Models and Applications. Springer, New York (2014)

    Google Scholar 

  10. 10.

    Chandesris, M., Serre, G., Sagaut, P.: A macroscopic turbulence model for flow in porous media suited for channel, pipe and rod bundle flows. Int. J. Heat Fluid Flow 49, 2739–2750 (2006)

    MATH  Google Scholar 

  11. 11.

    Ciarlet, P.: The Finite Element Method for Elliptic Problems. North-Holland, Amsterdam (1978)

    Google Scholar 

  12. 12.

    de Lemos, M.J.S.: Turbulence in Porous Media, 2nd edn. Elsevier, Waltham (2012)

    Google Scholar 

  13. 13.

    de Oliveira, H.B., Paiva, A.: On a one equation turbulent model with feedbacks. In: Pinelas, S., et al. (eds.) Differential and Difference Equations with Applications, Springer Proc. Math. Stat., vol. 164 (2016)

  14. 14.

    Dreyfuss, P.: Results for a turbulent system with unbounded viscosities: weak formulations, existence of solutions, boundedness and smoothness. Nonlinear Anal. 68, 1462–1478 (2008)

    MathSciNet  Article  MATH  Google Scholar 

  15. 15.

    Druet, P.-E.: On existence and regularity of solutions for a stationary Navier–Stokes system coupled to an equation for the turbulent kinetic energy. Weierstrass Institut für Angewandte Analysis und Stochastik, Preprint 2007–13

  16. 16.

    Druet, P.É., Naumann, J.: On the existence of weak solutions to a stationary one-equation RANS model with unbounded eddy viscosities. Ann. Univ. Ferrara 55, 67–87 (2009)

    MathSciNet  Article  MATH  Google Scholar 

  17. 17.

    Evans, L.C.: Partial Differential Equations. Graduate Studies in Math., vol. 19. American Mathematical Society, Providence (1998)

    Google Scholar 

  18. 18.

    Galdi, G.P.: An Introduction to the Mathematical Theory of the Navier–Stokes Equations. Steady-State Problems. Springer, New York (2011)

    Google Scholar 

  19. 19.

    Gallouët, T., Herbin, R.: Existence of a solution to a coupled elliptic system. Appl. Math. Lett. 2, 49–55 (1994)

    MathSciNet  Article  MATH  Google Scholar 

  20. 20.

    Gallouët, T., Lederer, J., Lewandowski, R., Murat, F., Tartar, L.: On a turbulent system with unbounded eddy viscosities. Nonlinear Anal. 52, 1051–1068 (2003)

    MathSciNet  Article  MATH  Google Scholar 

  21. 21.

    Guo, B., Yu, A., Wright, B., Zulli, P.: Simulation of turbulent flow in a packed bed. Chem. Eng. Technol. 29(5), 596–603 (2006)

    Article  Google Scholar 

  22. 22.

    Ingham, D.B., Pop, I. (eds.): Transport Phenomena in Porous Media. Elsevier, Oxford (1998)

    Google Scholar 

  23. 23.

    Kenjereš, S., Hanjalić, K.: On the implementation of effects of Lorentz force in turbulence. Int. J. Heat Fluid Flow 21, 329–337 (2000)

    Article  MATH  Google Scholar 

  24. 24.

    Lederer, J., Lewandowski, R.: A RANS 3D model with unbounded eddy viscosities. Ann. Inst. H. Poincaré Anal. Non Linéaire 24, 413–441 (2007)

    ADS  MathSciNet  Article  MATH  Google Scholar 

  25. 25.

    Lewandowski, R.: The mathematical analysis of the coupling of a turbulent kinetic energy equation to the Navier–Stokes equation with an eddy viscosity. Nonlinear Anal. 28, 393–417 (1997)

    MathSciNet  Article  MATH  Google Scholar 

  26. 26.

    Málek, J., Nečas, J., Rokyta, M., Rüžička, M.: Weak and Measure-Valued Solutions to Evolutionary PDEs. Chapman & Hall, London (1996)

    Google Scholar 

  27. 27.

    Mohammadi, B., Pironneau, O.: Analysis of the K-Epsilon Turbulence Model. Wiley-Masson, Paris (1993)

    Google Scholar 

  28. 28.

    Moser, J.: A sharp form of an inequality by N. Trudinger. Indiana Univ. Math. J. 20, 1077–1092 (1970/71)

  29. 29.

    Nakayama, A., Kuwahara, F.: A macroscopic turbulence model for flow in a porous medium. J. Fluid Eng. 121, 427–433 (1999)

    Article  Google Scholar 

  30. 30.

    Naumann, J.: Existence of weak solutions to the equations of stationary motion of heat-conducting incompressible viscous fluids. In: Progr. Nonlinear Differential Equations Appl., vol. 64, pp. 373–390, Birkhäuser, Basel (2005)

  31. 31.

    Naumann, J., Wolf, J.: On Prandtl’s turbulence model: existence of weak solutions to the equations of stationary turbulent pipe-flow. Discrete Contin. Dyn. Syst. Ser. S 6(5), 1371–1390 (2013)

    MathSciNet  Article  MATH  Google Scholar 

  32. 32.

    Nimvaria, M.E., Maerefata, M., Jouybaria, N.F., El-hossaini, M.K.: Numerical simulation of turbulent reacting flow in porous media using two macroscopic turbulence models. Comput. Fluids 88, 232–240 (2013)

    MathSciNet  Article  Google Scholar 

  33. 33.

    Pedras, M.H.J., de Lemos, M.J.S.: On the definition of turbulent kinetic energy for flow in porous media. Int. Commun. Heat Mass Transf. 27(2), 211–220 (2000)

    Article  Google Scholar 

  34. 34.

    Rakotoson, J.-M.: Quasilinear elliptic problems with measures as data. Differ. Integral Equ. 4(3), 449–457 (1991)

    MathSciNet  MATH  Google Scholar 

  35. 35.

    Talenti, G.: Best constant in Sobolev inequality. Ann. Mat. Pura Appl. 110(4), 353–372 (1976)

    MathSciNet  Article  MATH  Google Scholar 

  36. 36.

    Temam, R.: Navier–Stokes equations. Elsevier North-Holland, New York (1979)

    Google Scholar 

  37. 37.

    Vafai, K., Kim, S.J.: Fluid mechanics of an interface region between a porous medium and a fluid layer—an exact solution. Int. J. Heat Fluid Flow 11, 254–256 (1990)

    Article  Google Scholar 

Download references

Author information

Affiliations

Authors

Corresponding author

Correspondence to H. B. de Oliveira.

Additional information

Communicated by O. Pironneau

Rights and permissions

Reprints and Permissions

About this article

Verify currency and authenticity via CrossMark

Cite this article

de Oliveira, H.B., Paiva, A. A Stationary One-Equation Turbulent Model with Applications in Porous Media. J. Math. Fluid Mech. 20, 263–287 (2018). https://doi.org/10.1007/s00021-017-0325-6

Download citation

Mathematics Subject Classification

  • 76F60
  • 76S05
  • 35J57
  • 35D30
  • 76D03

Keywords

  • Turbulence
  • k-epsilon modelling
  • Porous media
  • Existence
  • Uniqueness