Journal of Mathematical Fluid Mechanics

, Volume 20, Issue 1, pp 189–197 | Cite as

Existence and Stability of Spatial Plane Waves for the Incompressible Navier–Stokes in \(\mathbb {R}^3\)

  • Simão CorreiaEmail author
  • Mário Figueira


We consider the three-dimensional incompressible Navier–Stokes equation on the whole space. We observe that this system admits a \(L^\infty \) family of global spatial plane wave solutions, which are connected with the two-dimensional equation. We then proceed to prove local well-posedness over a space which includes \(L^3(\mathbb {R}^3)\) and these solutions. Finally, we prove \(L^3\)-stability of spatial plane waves, with no condition on their size.


Incompressible Navier–Stokes local well-posedness stability spatial plane waves 

Mathematics Subject Classification

35B35 35Q30 76D03 


Unable to display preview. Download preview PDF.

Unable to display preview. Download preview PDF.


  1. 1.
    Correia, S., Figueira, M.: The hyperbolic nonlinear Schrödinger equation, arXiv:1510.08745
  2. 2.
    Correia, S., Figueira, M.: Spatial plane waves for the nonlinear Schrödinger equation: local existence and stability results. Comm. Partial Diff. Eq. (To appear)Google Scholar
  3. 3.
    Ginibre, J., Velo, G.: The Cauhcy problem in local spaces for the complex Ginzburg–Landau equation. I. Compactness methods. Phys. D 95(3–4), 191–228 (1996)MathSciNetCrossRefzbMATHGoogle Scholar
  4. 4.
    Ginibre, J., Velo, G.: The Cauhcy problem in local spaces for the complex Ginzburg–Landau equation. II. Contraction methods. Commun. Math. Phys. 187, 45–79 (1997)ADSCrossRefzbMATHGoogle Scholar
  5. 5.
    Plecháč, P., Šverák, V.: On self-similar solutions of the complex Ginzburg–Landau equation. Commun. Pure Appl. Math. 54, 1215–1242 (2001)MathSciNetCrossRefzbMATHGoogle Scholar
  6. 6.
    Lemarié-Rieusset, P.: Recent Developments in the Navier–Stokes Problem. Chapman & Hall/CRC, Boca Raton (2002)CrossRefzbMATHGoogle Scholar
  7. 7.
    Kato, T.: Strong \(L^p\)-solutions of the Navier–Stokes equation in \({\mathbb{R}}^m\), with applications to weak solutions. Math. Z. 187, 471–480 (1984)MathSciNetCrossRefzbMATHGoogle Scholar
  8. 8.
    Kato, T., Fujita, H.: On the non-stationary Navier–Stokes system. Rend. Sem. Mat. Univ. Padova 32, 243–260 (1962)MathSciNetzbMATHGoogle Scholar

Copyright information

© Springer International Publishing 2017

Authors and Affiliations

  1. 1.CMAF-CIO and FCULLisboaPortugal

Personalised recommendations